Draft Murrumbidgee Valley Floodplain Management Plan

Report to assist Stage 1 public consultation

March 2024
Acknowledgement of Country

The Department of Climate Change, Energy, the Environment and Water acknowledges that it stands on Aboriginal land. We acknowledge the Traditional Custodians of the land and we show our respect for Elders past, present and emerging through thoughtful and collaborative approaches to our work, seeking to demonstrate our ongoing commitment to providing places in which Aboriginal people are included socially, culturally and economically.

Published by NSW Department of Climate Change, Energy, the Environment and Water
dcceew.nsw.gov.au
Draft Murrumbidgee Valley Floodplain Management Plan – Report to assist Stage 1 public consultation
First published: March 2024
Department reference number: PUB23/893

Acknowledgements

Cover image: Murrumbidgee River, Peter Simpson, NSW Department of Primary Industries

Copyright and disclaimer

© State of New South Wales through the Department of Climate Change, Energy, the Environment and Water 2024. Information contained in this publication is based on knowledge and understanding at the time of writing, March 2024, and is subject to change. For more information, please visit dcceew.nsw.gov.au/copyright

TMP-MN-R-WC-V1.2
Contents

Summary ... 5
Introduction .. 5
Background .. 7
Key elements for development of the floodplain management plan... 8
Submission process .. 25
Next steps ... 26
Appendix 1 Development of the floodway network ... 27
Appendix 2 First Nations consultation .. 41
Appendix 3 Ecological asset identification and categorisation ... 44

List of figures

Figure 1. Proposed Murrumbidgee Valley Floodplain .. 10
Figure 2. Proposed Floodway Network for the Murrumbidgee Valley Floodplain ... 14
Figure 3. Records on the Aboriginal Heritage Information Management System (as at February 2024) within the proposed Murrumbidgee Valley Floodplain ... 16
Figure 4. Records on the State Heritage Register (as at January 2024) within the proposed Murrumbidgee Valley Floodplain ... 18
Figure 5. Identified flood-dependent ecological assets in the proposed Murrumbidgee Valley Floodplain ... 21
Figure 6. Status of the draft Murrumbidgee Valley Floodplain Management Plan ... 26
Figure 7. The five reaches of the hydraulic models within the proposed Murrumbidgee Valley Floodplain ... 33
Figure 8. Process for determining how an unapproved work is considered in the development of the floodway network ... 34
Figure 9. Hydraulic modelling results (depth-velocity product) map from all five models for the large design flood event (March 2012 – 2% AEP at the Murrumbidgee River at Narrandera gauge) 38
List of tables

Table 1. Flood work types that are typically permitted in floodways ... 23
Table 2. Available dates and times for individual appointments .. 25
Table 3. AEP for historic flood events at selected locations in the Murrumbidgee Valley Floodplain 28
Table 4. Hydraulic models in each reach of the Murrumbidgee Valley Floodplain ... 32
Table 5. Peak recorded flows and water levels during selected flood events for calibration and validation of hydraulic models .. 36
Table 6. Summary of hydraulic models’ calibration results for peak inundation depth differences (metres) .. 37
Table 7. Summary of the criteria used to delineate the hydraulic categories in the floodway network 38
Table 8. Overview of First Nations engagement sessions to-date .. 41
Table 9. Summary of feedback received from First Nations communities in the Murrumbidgee Valley floodplain and the department’s response .. 42
Table 10. Wetlands – Plant community types in the Murrumbidgee Valley Floodplain and their watering requirements .. 47
Table 11. Other floodplain ecosystems – Plant community types in the Murrumbidgee Valley Floodplain and their watering requirements .. 48
Summary

The Water Group of the NSW Department of Climate Change, Energy, the Environment and Water (the department) is developing a whole-of-valley floodplain management plan (FMP) under the Water Management Act 2000 (the WM Act) for the Murrumbidgee Valley. This will replace the historical FMP that was originally developed under the Water Act 1912.

We are seeking feedback on the following key elements that will inform the development of the draft Floodplain Management Plan for the Murrumbidgee Valley Floodplain (the draft FMP) through Stage 1 public consultation, including a formal submission process from 25 March until 5 May 2024:

1. proposed floodplain boundary
2. proposed flood events to be used in hydraulic flood modelling (design floods)
3. proposed floodway network, which includes the main floodways, and areas important for the temporary storage of floodwater during the passage of a flood
4. flood-dependent and flood-impacted Aboriginal cultural assets and values located within the floodplain
5. flood-impacted heritage sites located within the floodplain
6. flood-dependent ecological assets that have been identified within the floodplain
7. local variances from default rules for flood work applications in different areas of the floodplain.

The department is seeking feedback on the proposed floodway network and flood-dependent assets to identify and confirm the areas of the floodplain that require protection. FMPs protect these areas by restricting the types of flood works that can be constructed and in doing so allow for floodwater to move freely to and from a river or to assets that rely on it.

FMPs are required under the WM Act to consider the risk to life and property from the effects of flooding. The identification and confirmation of the proposed floodway network informs this consideration. The construction of a flood work in an area which has fast-flowing floodwater (floodways) can significantly increase the risk to life and property; both on the landholding where the flood work is constructed and on neighbouring properties. The draft FMP will limit the types and size of flood works constructed in floodways to minimise the risk to life and property.

Introduction

This report has been prepared to assist stakeholders in providing informed feedback during Stage 1 public consultation for the draft FMP. Stage 1 public consultation is intended to provide an early
opportunity for community feedback on key elements that will inform the development of the draft FMP prior to formal public exhibition of the draft FMP in late 2024.

The draft FMP will consolidate and update the existing floodplain management arrangements to:

- meet the requirements of the WM Act
- establish consistent rules for flood works across the floodplain
- improve the coordinated regulation of flood works across the southern Murray–Darling Basin.

Flood works are structures that alter the flow of water to/from a river or alter the movement of floodwater during a flood. Examples of flood works are levees, earthworks used to protect houses or infrastructure, and roads.

In NSW all flood works require a flood work approval. Some activities considered low-risk or covered by other legislation may be exempt from an approval. Please see Exemptions to flood work approvals fact sheet on WaterNSW's website for further information.

The draft FMP will set the rules for flood work approvals and the criteria that will be used to assess applications. For further information on WaterNSW and flood work approval processes, please see the WaterNSW approvals webpage.

More information on FMPs, including the replacement of the historical FMPs in the southern Murray–Darling Basin, is available on our website.

Floodplain management plans cannot provide a comprehensive response to flooding

Improvements to flood risk mitigation were considered through the 2022 NSW Flood Inquiry. Read the inquiry report and the NSW Government response.

As part of developing the draft FMP, the department will provide all modelling information to the relevant Commonwealth, state and interstate emergency management agencies so that it may assist in their future flood predictions. The draft FMP will set rules for flood works on the Murrumbidgee Valley Floodplain. It will not deal with flood mitigation or flood response.
Background

Murrumbidgee catchment

The Murrumbidgee catchment is in southern NSW and is bordered by the Great Dividing Range to the east, the Lachlan catchment to the north, and the Murray catchment to the south. The catchment has an area of 84,000 square kilometres, with elevations ranging from over 2,200 metres to the east to less than 50 metres on the western plains.

The majority of the Murrumbidgee catchment is used for agricultural purposes. Major water users include local councils and utilities, forestry, tourism, and agriculture, including rice, dairy, wool, wheat, beef, lamb, grapes and citrus.

The Murrumbidgee catchment also supports a range of water-dependent ecosystems, including instream aquatic habitats, riparian forests, and floodplain watercourses, woodlands and wetlands. The catchment supports some of the largest remaining semi-permanent wetland systems and colonial nesting waterbird breeding sites in Australia.

Existing floodplain management arrangements

Existing floodplain management arrangements within the rural areas of the Murrumbidgee catchment consist of the following in-force FMP prepared under the Water Act 1912 (existing localised FMP) and two floodplains declared under the Water Act 1912:

- Murrumbidgee River Hay to Maude Floodplain Management Plan (2014) and associated declared floodplain
- Murrumbidgee Old Man and Sandy Creeks (Currawarna to Narrandera) declared floodplain (1985).

In addition to the above statutory arrangements, there are the following non-statutory guidance documents:

- Guidelines for Sandy and Poison Waterholes Creeks Floodplain Development Kywong to Narrandera
- Guidelines for Floodplain Development: Old Man Creek
- Guidelines for Floodplain Development: Murrumbidgee River Beremed to Narrandera

Consideration will be given to the existing floodplain management arrangements in the above statutory and non-statutory documents when developing the draft FMP. Further, the boundaries of the existing designated floodplains have been incorporated into the proposed floodplain boundary.

The existing localised FMP is published on our website.
Key elements for development of the floodplain management plan

The information and maps presented in this report have been prepared using the best available information for the Murrumbidgee Valley Floodplain. The information and maps are subject to change following Stage 1 public consultation.

1. Proposed floodplain boundary

The proposed Murrumbidgee Valley Floodplain boundary, shown in Figure 1, has been mapped to capture the areas that are inundated during large flood events while considering flood works that may influence the way floodwater moves across the landscape.

The proposed floodplain boundary extends downstream from Wagga Wagga in the east to the junction of the Murray and Murrumbidgee rivers in the west and includes areas currently with the existing declared floodplains and the existing localised FMP. The proposed floodplain boundary includes the northern end of the Yanco Creek system (to Kidman Way), as well as the Gum Creek anabranch. The proposed floodplain boundary is 1,242,686 hectares in area and 22.5% of this area is already captured in the existing localised FMP or declared floodplain.

The proposed floodplain boundary will connect with the floodplain boundaries for the FMPs currently being developed for the Murray, Lachlan and Billabong Creek valleys, improving the assessment of cumulative impacts from individual flood works across the southern Murray–Darling Basin.

A combination of hydraulic and administrative factors, where appropriate, have been used to develop the proposed floodplain boundary including:

- inundation data within the Murrumbidgee catchment
- hydraulic model development
- existing localised FMP
- water source boundaries, as established in water sharing plans
- local government areas
- major roads and railways which act as barriers to large scale flood movement.

For a higher resolution version of the proposed floodplain boundary please see Stage 1 Interactive Spatial Map.
To assist with providing feedback on the proposed floodplain boundary as shown in Figure 1, we recommend you take a screenshot of the relevant area/s displayed on the interactive spatial map and use a drawing tool to illustrate feedback or refer to the area shown in written feedback. The screenshot of the map can be saved as an image file and attached to your submission.

Prompts for feedback

Do you support the proposed boundary of the Murrumbidgee Valley Floodplain?
Are there areas of the floodplain that should be included or omitted?
Is the proposed boundary correct at a property scale?
2. Proposed design floods

A design flood is a flood of known magnitude that can be modelled and used for planning or engineering purposes. They are usually based on recorded historical events that are preferably within the living memory of a community.

Selection of a design flood is based on an understanding of flood behaviour and associated flood risk. Multiple design floods are often selected to account for the social, economic, ecological and cultural consequences associated with floods of different magnitudes.

Design flood events that are selected will be described through the following attributes:

- the flood event that is based on (month, year)
- where the data is taken from, such as a section of river and associated gauge
- the probability of an equivalent (or larger) flood event occurring in any given year, known as the annual exceedance probability (AEP).

A large design flood is a large magnitude flood event that generally has a 5% or less probability of occurring in any given year (AEP) while a small design flood is a smaller magnitude flood event that has at least a 10% probability of occurring in any given year (AEP). There may be some slight variances in the AEP associated with a large or small design flood because of the nature of the flood event that the design flood is based on.

The existing localised FMP used the 1974 flood to model the floodway network in that area of the floodplain.

The draft FMP is being developed using 2 design floods of different magnitudes. Five hydraulic models were created to simulate the movement of these design floods through the river channels and floodplain.

The following proposed design floods were used to model the floodway network:

- **large design flood of March 2012**: 2% AEP at the Murrumbidgee River at Narrandera gauge (410005)
- **small design flood of October 2016**: 14% AEP at the Murrumbidgee River at Narrandera gauge (410005).

More information on how the proposed design floods were selected, and the associated hydraulic models is available in Appendix 1 Development of the floodway network.

Prompts for feedback

Do you agree with the choice of the proposed design floods?

Do the proposed design floods align with your experience of past flood events?
3. Proposed floodway network

A FMP will coordinate flood work development on a floodplain to ensure that floodwater can move freely to and from rivers and creeks. To do this, an understanding of how water moves across the landscape when it floods is required.

Five hydraulic models have been developed to simulate the movement of floodwater through river channels, wetlands and the wider floodplain during the proposed large and small design floods. This modelling process identifies areas of the floodplain that have the deepest and fastest flowing floodwater and pose the greatest risk to life and property. These areas are known as floodways, and together with areas of ponding, they make up the floodway network which is described below.

The proposed floodway network for the Murrumbidgee valley floodplain, shown in Figure 2, has been defined by:

- mapping the outputs of the hydraulic modelling
- considering the floodway networks in the existing localised FMP and historical floodplain development guidelines, and aligning with them where appropriate
- reviewing additional flood photography and satellite imagery.

The proposed floodway network is comprised of floodways (approximately 5% of the floodplain) and the inundation extent (ponding areas) (approximately 30% of the floodplain).

More information about how the hydraulic models and the floodway network were developed is available in Appendix 1 Development of the floodway network.

For a higher resolution version of the proposed floodway network please see Stage 1 Interactive Spatial Map.

To assist with providing feedback on the proposed floodplain boundary as shown in Figure 2, we recommend you take a screenshot of the relevant area/s displayed on the interactive spatial map and use a drawing tool to illustrate feedback or refer to the area shown in written feedback. The screenshot of the map can be saved as an image file and attached to your submission.

Consideration of unapproved flood works

The development of the floodway network includes consideration of existing flood works in the landscape, such as levees, embankments and roads. Each of these features can have a significant impact on the movement of floodwater and must be accounted for in the hydraulic models. Some of these flood works do not have a flood work approval. A process for determining how unapproved flood works are considered in the development of the floodway network is shown in Figure 8 in Appendix 1 Development of the floodway network.
We acknowledge that unapproved flood works are a significant issue for many local landholders. To report concerns regarding unapproved works, please visit the NRAR website at www.nrar.nsw.gov.au/suspicious-activities. You can also contact NRAR on 1800 633 362 during business hours or via email nrar.enquiries@nrar.nsw.gov.au.

Floodways

Throughout a floodplain, there will be pathways of fast-flowing floodwater during times of flood. These areas are floodways and are part of the floodway network. They are often aligned with naturally defined channels. Floodways are high-risk areas that, even if only partially blocked, would cause significant changes in the movement of floodwater across the floodplain. It is a critical area of the floodplain as it allows water to leave or return to a river or creek during times of flood or deliver floodwater to ecological assets and Aboriginal cultural values that depend on it.

Floodways also pose the greatest risk to life and property during times of flood.

Inundation extent (ponding areas)

Along the floodways there will be areas where floodwater breaks out (flood discharge) and forms ponds. These areas are known as the inundation extent and are also part of the floodway network. The inundation extent is critical to storing floodwater during times of flood. Without these areas, the depth and speed of the floodwater in the floodway would dramatically increase. It is important that flood works constructed in these areas are coordinated so that they do not block inundation, particularly during large floods.

Other areas of the floodplain

The remaining area of the floodplain can be categorised as flood fringe areas or flood protected areas. These areas do not form part of the floodway network.

The flood fringe is an area which may be flooded but is not considered critical in the flow of water during times of flood. Flood-protected areas do not receive floodwater. This may be due to the area being higher ground or the presence of existing flood works prevents the passage of floodwater.

Prompts for feedback

Do the proposed floodways and inundation extent align with your experience of past flood events?

What changes should be made to the floodway network?
Figure 2. Proposed Floodway Network for the Murrumbidgee Valley Floodplain
4. Identified flood-dependent and flood-impacted Aboriginal cultural assets and values

Aboriginal cultural assets and values on the floodplain can be:

- flood-dependent, such as waterholes, fish traps or scarred trees that require inundation
- flood-impacted, such as Aboriginal burial grounds or shell middens that can be damaged by scour and erosion caused by flooding or directly during the construction of a flood work.

We identify Aboriginal cultural floodplain assets in FMPs to support their protection and restoration, which in turn provides social and economic benefits to the community. Healthy waterways and floodplains are critical to the culture and wellbeing of Aboriginal people. Water provides food, kinship, connection, recreation, stories, songlines and healing.

The existing localised FMPs require flood works to be assessed against section 166 of the Water Act 1912 (repealed) and Part 5 of the Environmental Planning and Assessment Act 1979 to ensure connectivity and prevent ground disturbance to identified Aboriginal cultural assets and values.

The Aboriginal cultural assets and values currently registered on the Aboriginal Heritage Information Management System (AHIMS) are shown in Figure 3. This information is provided to demonstrate the abundance of Aboriginal cultural sites throughout the Murrumbidgee Valley floodplain. Figure 3 is shown at a valley scale, does not show restricted sites and does not have an associated interactive map. First Nations communities in Narrandera, Darlington Point, Hay and Balranald, as well as the NSW Heritage AHIMS team, were consulted on the use of Figure 3 and agreed to its inclusion in this report.

As part of assessing and determining an application for a flood work approval, a search of AHIMS must be conducted. To ensure that Aboriginal cultural assets and values are protected from impacts associated with flood works, the department has been explaining and promoting the use of AHIMS as part of consultation with First Nations communities.

For more information on the First Nations consultation undertaken in the Murrumbidgee Valley floodplain, including the feedback received, please see Appendix 2 First Nations consultation.

Information on how FMPs can protect cultural assets is available on our [website](#).

Prompts for feedback

Are there other Aboriginal cultural assets or values on the floodplain that should be considered?
Figure 3. Records on the Aboriginal Heritage Information Management System (as at February 2024) within the proposed Murrumbidgee Valley Floodplain.
5. Identified heritage sites

Heritage sites may be sensitive to changes in flood behaviour or disturbance from flood work construction. Heritage sites are cultural heritage objects and places as listed on the following Commonwealth, state and local government heritage registers:

- Australian Heritage Database
- NSW Aboriginal Heritage Information Management System
- NSW Historic Heritage Information Management System
- NSW State Heritage Register.

Some Aboriginal cultural assets and values may also be listed on heritage registers and are discussed in the previous section.

The heritage sites within the Murrumbidgee Valley Floodplain that are listed on the NSW State Heritage Register are shown in Figure 4. The identified heritage sites are not dependent upon or connected with flooding. However, some of these sites may be flood-impacted as they could be damaged by flooding or directly impacted during the construction of a flood work. This information is provided to demonstrate the array of heritage sites throughout the Murrumbidgee Valley Floodplain and does not have an associated interactive map.

As part of assessing and determining an application for a flood work approval a search of the State Heritage Inventory must be conducted. This online search tool holds information about most statutory protected heritage items in NSW, including the State Heritage Register.

Find out more information about heritage listed items and significant sites in NSW by visiting the Heritage NSW website.

Prompts for feedback

Are there other heritage sites on the floodplain that should be considered?
Figure 4. Records on the State Heritage Register (as at January 2024) within the proposed Murrumbidgee Valley Floodplain
6. Identified flood-dependent ecological assets

A key objective of an FMP is to maintain flood connectivity to flood-dependent ecological assets. This means that flood works should not block the floodways that connect them to floodwaters.

Flood-dependent ecological assets rely on flooding to maintain their ecological character and sustain essential processes. Flood-dependent ecological assets are identified in FMPs to support their protection, which in turn provides social and economic benefits to the community.

A similar process is applied in the existing localised FMP with the identification and inclusion of flood-dependent ecosystems and ‘areas of possible wetland value’, and the requirement for flood works to be assessed against section 166 of the *Water Act 1912* (repealed) and Part 5 of the *Environmental Planning and Assessment Act 1979* to ensure connectivity to identified ecological sites and protection of fish passage.

Within the proposed Murrumbidgee Valley Floodplain, the following types of ecological assets, shown in Figure 5, are being considered in the development of the draft FMP:

- **wetlands**: semi-permanent wetlands (non-woody) and floodplain wetlands (flood-dependent shrubland wetlands)
- **other floodplain ecosystems**: flood-dependent forest/woodland (wetlands) and flood-dependent woodland.

The ecological assets are categorised according to the flooding requirements of their vegetation communities, which correlates to the degree of connectivity required to the floodway network. For example, wetlands and their associated vegetation communities are highly flood-dependent and therefore will either be located within the floodway network or have a direct connection to the floodway network.

The ecosystems also provide important habitat for native fish, amphibians, reptiles, waterbirds, woodland birds and mammals, and invertebrate and microbial biota. Habitats for fish (and fish passage), waterbirds and other water-dependent fauna have been identified and will be considered in the development of the draft FMP.

The ecological assets are identified using the best available vegetation mapping and survey information, including the NSW State Vegetation Type Map\(^1\) and wetland mapping. More information about how ecological assets have been identified and categorised is available in Appendix 3 Ecological asset identification and categorisation.

For a higher resolution version of the proposed flood-dependent ecological assets please see Stage 1 Interactive Spatial Map.

\(^1\) Department of Planning and Environment (2022) NSW State Vegetation Type Map. Current Release C1.1.M1.1 (December 2022)
To assist with providing feedback on the proposed floodplain boundary as shown in Figure 5, we recommend you take a screenshot of the relevant area/s displayed on the interactive spatial map and use a drawing tool to illustrate feedback or refer to the area shown in written feedback. The screenshot of the map can be saved as an image file and attached to your submission.

Prompts for feedback

Do you agree with the types of flood-dependent ecological assets that have been identified?

Are there other ecological assets on the floodplain that should be considered?

Are there any areas of ecological significance that are highly flood-dependent, which are not shown on Figure 5?
Figure 5. Identified flood-dependent ecological assets in the proposed Murrumbidgee Valley Floodplain
7. Localised variances to some rules for flood work applications

FMPs follow a default rule set, which determines what can be assessed and approved as a flood work. These rule sets fall into two main categories depending on the location of the work:

- **Floodways and areas of ecological, heritage or Aboriginal cultural significance** – flood works in these areas will be restricted to specific types that are essential for the protection of life and property, or improvement of the floodplain.

- **Inundation extent and flood fringe** – all types of flood works are permitted, subject to conditions and assessment criteria.

There are some specific aspects of the rule set that can be tailored to account for local conditions and needs. These aspects are detailed below and are subject to consultation outcomes.

For examples of existing FMP rules, please refer to the rule summary sheets for FMPs in the northern Murray–Darling Basin on the department’s website.

Types of works permitted in floodways

The proposed floodways for the Murrumbidgee Valley Floodplain are shown in Figure 2. The granting of flood work approvals in floodways will be limited to specific types of flood works.

This is a change from the current planning arrangements in the existing localised FMP. Under existing planning arrangements any type of flood work within floodways may be applied for, subject to comprehensive assessment processes and advertising requirements for most types of flood works.

The difference in approaches between the existing localised FMP and the draft FMP relates to the requirement under the WM Act for the draft FMP to consider the risk to life and property from the effects of flooding. The construction of a flood work in a floodway can significantly increase the risk to life and property; both on the landholding where the flood work is constructed and on neighbouring properties.

Hence, the default types of flood works permitted in floodways will be limited to those that are critical for domestic or farm operations, such as those designed to protect life, infrastructure or provide refuge for stock, and will be restricted to a specified size or enclosing a specified area. The assessment process will be streamlined and, in most circumstances, advertising will not be required.

Table 1 lists the default types of flood works and their purpose that are typically permitted in floodways. Landholders will be required to lodge an application for a flood work approval for these types of works.
Table 1. Flood work types that are typically permitted in floodways

<table>
<thead>
<tr>
<th>Flood work type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access roads (roads within private property)</td>
<td>To ensure landholders have basic provisions to access property.</td>
</tr>
<tr>
<td>Primary access roads (private road leading directly to a permanently occupied fixed dwelling)</td>
<td>To further ensure landholders have basic provisions to access property or evacuate during a major flood event by permitting higher level roads that directly service homes.</td>
</tr>
<tr>
<td>Supply channels (below ground)</td>
<td>To ensure landholders can access water rights from water sources.</td>
</tr>
<tr>
<td>Stock refuges</td>
<td>To account for animal welfare and to minimise a landholder’s potential to lose stock to floodwaters.</td>
</tr>
<tr>
<td>Infrastructure protection works</td>
<td>For protecting high value infrastructure such as homes and sheds. To minimise the risk to life and property from flooding.</td>
</tr>
<tr>
<td>Ecological enhancement works</td>
<td>To improve flood connectivity to a recognised flood-dependent ecological asset, such as a wetland or lagoon.</td>
</tr>
<tr>
<td>Aboriginal cultural value enhancement flood works</td>
<td>To improve flood connectivity to a recognised flood-dependent Aboriginal cultural asset or value, such as a waterhole or lagoon that holds significance to Aboriginal people.</td>
</tr>
<tr>
<td>Aboriginal cultural value protection work</td>
<td>For protecting flood-impacted cultural sites such as burial grounds and shell midden sites that may be damaged by scour and erosion.</td>
</tr>
<tr>
<td>Heritage site protection work</td>
<td>For protecting heritage listed sites such as cemeteries, buildings or other places that may be damaged by inundation or scour and erosion.</td>
</tr>
</tbody>
</table>

Prompts for feedback

Do you agree with the proposed types of flood works that may be considered for approval in floodways?

Are there any other essential work types that should also be considered for approval in floodways?
Maximum height of access roads

Access roads are an essential flood work that allows for the protection of life and property. When located in a floodway, they need to be constructed to allow for appropriate flood connectivity.

A key objective of the maximum height on an access road is to balance the impacts of the flood work with the need for adequate access during times of flood.

FMPs allow for both standard access roads (including farm tracks) and primary access roads (roads leading directly to a permanently occupied fixed dwelling) to be constructed within floodways. Primary access roads will have a greater height to help protect lives during a flood.

The maximum height of an access road may vary in response to local conditions and consultation outcomes.

We are seeking feedback on a maximum height value for access roads located in a floodway with 10 cm being the lower end of the threshold and 50 cm being the upper end of the threshold. All access roads will also be required to include causeways and to manage borrow pits related to construction and maintenance.

Prompts for feedback

What is an appropriate maximum height for a standard access road located within a floodway?

What is an appropriate maximum height for a primary access road located within a floodway?
Submission process

We are seeking feedback on key elements that will be used to inform the development of the draft FMP through a public submission process from **25 March until 5 May 2024**.

Have your say by:

Completing the online submission form OR

Downloading and completing a submission form and:

- Email the form to: floodplain.planning@dpie.nsw.gov.au
- Post the form to:

 Murrumbidgee Valley FMP
 Water Group - NSW DCCEEW
 PO Box 189
 Queanbeyan, NSW 2620

A pre-recorded presentation is available on the department’s website. It details an overview of the planning process and the feedback we are seeking.

During the Stage 1 consultation period, landholders and other stakeholders are invited to book individual appointments with departmental staff to ask questions about the key elements being proposed and how to make a submission. Table 2 lists the dates and locations available. Register for an appointment here.

Table 2. Available dates and times for individual appointments

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday 2 April</td>
<td>Online</td>
<td>10.00 am to 12 noon 1.00 pm to 5.00 pm</td>
</tr>
<tr>
<td>Wednesday 3 April</td>
<td>Hay Library, RSL Room 204 Lachlan St, Hay</td>
<td>2.00 pm to 6.00 pm</td>
</tr>
<tr>
<td>Thursday 4 April</td>
<td>Balranald Ex-Services Memorial Club 116 Market St, Balranald</td>
<td>10.00 am to 2.00 pm</td>
</tr>
<tr>
<td>Monday 8 April</td>
<td>Online</td>
<td>1.00 pm to 5.00 pm</td>
</tr>
<tr>
<td>Tuesday 9 April</td>
<td>Online</td>
<td>9.00 am to 1.00 pm</td>
</tr>
</tbody>
</table>
To assist with providing feedback on the maps shown in Figures 1 – 5, we recommend taking a screenshot of the relevant area/s displayed on the interactive spatial map and either using a drawing function for illustrating feedback or referring to the area shown in your written feedback. The screenshot of the map can then be saved as an image file and attached to your submission.

Next steps

All feedback is important and will be reviewed and considered when preparing the draft FMP for public exhibition (Figure 6). Submissions will be published in line with the department’s privacy policy, and a consultation outcomes report will be published summarising the feedback received.

The draft FMP will be released for formal public exhibition in late 2024, during which we will seek feedback on all elements of the draft FMP. This will include proposed management zones, rules and assessment criteria.

The final FMP is anticipated to commence 1 July 2025 following approval from the Minister for Water and concurrence from the Minister for Environment.
Appendix 1 Development of the floodway network

Computer-based hydraulic models are used to simulate the movement of floodwater across the landscape for the large and small design floods. Modelling data, as well as additional information such as flood imagery and topographical information, is used to map the floodway network. This appendix describes the design floods and the hydrologic and hydraulic modelling that has been used to develop the proposed floodway network for the Murrumbidgee Valley Floodplain.

Design floods

A design flood is a flood of known magnitude or annual exceedance probability (AEP) that can be modelled. A design flood forms the basis of the floodway network, and this information is used as the hydraulic basis when developing the management zones in an FMP. Selection of a design flood is based on an understanding of flood behaviour and associated flood risk. Multiple design floods may be selected to account for the social, economic and ecological consequences associated with floods of different magnitudes.

Two design floods were selected for the proposed Murrumbidgee Valley Floodplain:

- **large design flood – March 2012** (2% AEP at the Murrumbidgee River at the Narrandera gauge)
- **small design flood – October 2016** (14% AEP at the Murrumbidgee River at the Narrandera gauge).

AEP is the chance of a flood of a given or larger size occurring in any given year, usually expressed as a percentage (%) or a likelihood of 1 flood in x years. For example, a flood with an AEP of 5% means there is a 5% chance that a flood of the same size or larger will occur in any given year.

A flood frequency analysis was done to assist with the selection of the design floods, shown in Table 3. The flood frequency analysis was used to determine the relationship between peak flood discharge at a location of interest and the likelihood that a flood event of that size or greater would occur.
Table 3. AEP for historic flood events at selected locations in the Murrumbidgee Valley Floodplain

<table>
<thead>
<tr>
<th>Location (gauge number)</th>
<th>Reason for gauge selection</th>
<th>1974 flood event AEP (%)</th>
<th>2010 flood event AEP (%)</th>
<th>2012 flood event AEP (%)</th>
<th>2016 flood event AEP (%)</th>
<th>2022 flood event AEP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murrumbidgee River at Wagga Wagga (410001)</td>
<td>Has a long-term flow record and a reliable high flow estimate</td>
<td>0.7</td>
<td>13</td>
<td>2.5</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>Murrumbidgee River at Narrandera (410005)</td>
<td>Has a long-term flow record and a reliable high flow estimate</td>
<td>1.1</td>
<td>10</td>
<td>2.1</td>
<td>14</td>
<td>5.9</td>
</tr>
<tr>
<td>Murrumbidgee River at Darlington Point (410021)</td>
<td>Has a long-term flow record and a reliable high flow estimate</td>
<td>1.0</td>
<td>7.7</td>
<td>1.4</td>
<td>6.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Murrumbidgee River downstream of Hay Weir (410136)</td>
<td>Has a long-term flow record and a reliable high flow estimate</td>
<td>4.4</td>
<td>13</td>
<td>4.4</td>
<td>8.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

The large design flood (March 2012) was used to delineate floodways with significant discharge and to determine the extent of the floodway network. The large design flood was selected as:

- it is a recent large flood and is likely to be in the collective memory of floodplain communities
- it is representative of large floods in the Murrumbidgee Valley Floodplain
- there is a significant amount of information available for the event.

The large design flood (March 2012) is a 2% AEP flood event at the Murrumbidgee River at Narrandera gauge. This larger event was selected because of the consistent AEP values throughout the floodplain (2.5% AEP upstream to 4.4% AEP downstream) compared to other large flood events, such as the 2022 flood event. Specifically, the 2022 flood event was 11% AEP at the Wagga Wagga gauge (upstream) and 2.2% AEP at the Hay Weir gauge (downstream).

The small design flood (October 2016) is a 14% AEP flood event at the Murrumbidgee River at Narrandera gauge. This smaller event was selected to ensure that critical flow paths were identified in the floodway network, where the modelled inundation extent of this event is compared to the identified floodways to ensure the accuracy of the network.
Hydraulic modelling

The proposed Murrumbidgee Valley Floodplain was divided into five reaches for hydraulic modelling purposes. These reaches are described in Table 4 and shown in Figure 7.

A suite of advanced one- and two-dimensional computer simulation software for hydraulic modelling of flood behaviour in rural and urban settings, known as TUFLOW, was used for each of the five reaches. The study area was modelled in the two-dimensional (2D) domain with key structures, such as culverts, incorporated as one-dimensional (1D) elements. Successful calibration and validation of the hydraulic models allowed historical flood events, including design flood events, to be replicated with an acceptable degree of accuracy.

For the purpose of defining acceptable degrees of accuracy, a hydraulic modelling standard specification was developed. It stipulates that all models need to be within 200 mm of inundation depths (based on gauge data and spot elevations) and 5% of the inundation width (based on aerial photography and satellite imagery).

Hydraulic model data and parameters

Hydraulic models have several parameters that need to be calibrated to correctly represent how floodwater behaves across the floodplain. The choice of values for these parameters can significantly affect the accuracy of the model outputs and lead to incorrect delineation of the floodway network. Some of these parameters include:

- **Hydrometric and hydrologic model data**: Recorded (gauged) hydrograph data was used as boundary inflows for the hydraulic models.

- **Boundary conditions**: Each model identifies the inflow conditions at the upstream start of the project area and outflow conditions at the downstream finish of the project area. Representation of inflows is critical so that the model has the appropriate volumes and flow rates within the study area. Similarly, at the downstream boundary, water needs to be removed from the model at the correct rates to avoid artificially increasing or decreasing flooding.

- **Topographic information**: A digital elevation model of the existing floodplain topography was developed using a range of topographic datasets acquired from available bathymetry, river cross sectional surveys and Light Detection and Ranging (LiDAR) laser surveying.

- **Grid size**: The model grid size, which is the spatial distance between calculation points, can have a significant impact on the accuracy of results. In particular, if areas with a high variation in topography are represented too coarsely, the flow distribution between different flow paths will be impacted. Grid sizes used in the hydraulic models for the proposed Murrumbidgee Valley Floodplain are presented in Table 4.
• **Hydraulic structures**: All bridges, culverts, weirs, and regulators likely to impact flow along key watercourses and across adjoining floodplain areas were also included in the models as either 1D or 2D structures. In general, structures that were less than the model grid cell size wide (e.g., smaller floodplain culverts) were represented as 1D structures. It is important that all structures on the floodplain are represented in the model with a high level of accuracy. If structures are not represented correctly, they will behave differently. For example, water may overtop a levee sooner in the model than it does in reality, or water may be constricted by a bridge to a greater degree in the model than in reality.

Data for all significant structures in the model area were captured by ground survey in previous studies (e.g. Reconnecting River Country Program) and many remaining structures were measured during field inspections.

• **Existing hydraulic models**: Specific information such as surveyed topographical data and hydraulic structures information from previous developed hydraulic models within the study area were extracted and used in the hydraulic models developed for the Murrumbidgee River Floodplain.

• **Land use / vegetation**: Available land use and vegetation layers covering the study area were used to inform the “roughness” of the ground surface. Floodwater moves more slowly through dense vegetation compared to a cleared field. As part of the calibration process, flood observations, such as gauge data, satellite imagery, flood images, or footage, are compared to the model results, and the parameters like roughness are modified if the model is not aligning with the observed information.

• **Satellite imagery - Sentinel and Landsat**: Available satellite (Sentinel and Landsat 8) imagery of various dates during selected flood events were used for hydraulic model calibration and validation.

• **Data collected during previous flood events**: Flood information such as local flood levels, flow directions, flood extents and inundation duration collected during previous community consultation has been used for hydraulic model calibration and validation. Throughout June, July and August 2023 landholders and local councils, provided a range of data including ground and aerial flood level imagery and identification of areas where flood flow connectivity was compromised. To date, the department has collected an abundance of flood images, some drone footage and a significant number of verbal accounts of the 2022 flood event across all four valleys. While not used as a design flood, the 2022 flood was one of the events used to validate the models. There was also an abundance of historical flood information provided such as historical flood photos and descriptions of floodplain behaviour during past events from the 1950s to 2016.
• **Existing flood works:** A range of natural and constructed embankments extending across the floodplain, such as levees, rail, and road embankments, were included in the hydraulic models. Each of these features can have a significant impact on the movement of floodwater. Some of these flood works do not have a flood work approval.

A process for determining how unapproved flood works are considered in the development of the floodway network is shown in Figure 8. This process considers the potential flooding impacts of the unapproved work, whether the impact is contained within the landholding or if it impacts on other neighbouring properties and whether the impacted area is recognised as a floodway within the existing planning arrangements. Existing planning arrangements in the Murrumbidgee Valley Floodplain are described in the Background section of this report.

You can also contact NRAR on 1800 633 362 during business hours or via email nrar.enquiries@nrar.nsw.gov.au.
Table 4. Hydraulic models in each reach of the Murrumbidgee Valley Floodplain

<table>
<thead>
<tr>
<th>Floodplain model reach</th>
<th>Model grid cell size</th>
<th>Model description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagga Wagga to Narrandera</td>
<td>20m</td>
<td>A TUFLOW 1D/2D grid model was built from upstream of Wiradjuri Bridge at Wagga Wagga to the Newell Highway bridge at Narrandera. The major watercourses within this reach include Houlaghans Creek, Sandy Creek, Boggy Creek, Redbank Creek, Old Man Creek and Bullenbong Creek.</td>
</tr>
<tr>
<td>Narrandera to Darlington Point</td>
<td>20m</td>
<td>A TUFLOW 1D/2D grid model was built from the Newell Highway bridge at Narrandera to the Bridge Street bridge at Darlington Point. The model also includes the flow split between the Murrumbidgee and Yanco Creek.</td>
</tr>
<tr>
<td>Darlington Point to Hay Weir</td>
<td>40m</td>
<td>A TUFLOW 1D/2D grid model was built from Bridge Street at Darlington Point Bridge to 4.5km downstream of Hay Weir. The major tributary inflows within this reach include Uri Creek, Bringagee Creek and Gum Creek.</td>
</tr>
<tr>
<td>Hay Weir to Murray River confluence</td>
<td>40m</td>
<td>A TUFLOW 1D/2D grid model was built from 4.5km downstream of Hay Weir to the confluence with the Murray River. The model extends on both the northern and southern floodplains, including the Gayini/Nimmie-Caira system as well as the Redbank and Yanga areas.</td>
</tr>
<tr>
<td>Yanco Creek and Colombo Creek</td>
<td>20m</td>
<td>A TUFLOW 1D/2D grid model was built along Yanco Creek from the Murrumbidgee River to downstream of the Kidman Way bridge. The model also includes the Colombo Creek system.</td>
</tr>
</tbody>
</table>
Figure 7. The five reaches of the hydraulic models within the proposed Murrumbidgee Valley Floodplain
Figure 8. Process for determining how an unapproved work is considered in the development of the floodway network

If the work was removed from the hydraulic model, does the floodway network continue?
- Yes
- No

If the work was removed, would there be an increase of 0.2 m²/s or more in the depth-velocity product?
- Yes
- Area is excluded from the floodway network
- No

Does the increase in depth-velocity product extend into the neighbouring properties?
- Yes
- No

Is the impacted area recognised as a floodway within existing floodplain planning arrangements?
- Yes
- Floodway network mapped to include the work
- No

Floodway network mapped to not include the work
- Floodway network mapped to include the work
Hydrologic modelling

Flood flow data at various points across the floodplain is a key input in the hydraulic models that are used to map the floodway network. Within the proposed Murrumbidgee Valley Floodplain, flood flows were derived from mainstream and tributary streamflow gauges, while flows for ungauged tributaries were estimated using hydrologic models simulating rainfall-runoff on a catchment by converting storm rainfall to flow hydrographs. Watershed Bounded Network Model (WBNM) software was used to develop the hydrologic models in this study.

Hydrologic models were developed for the following ungauged tributaries:

- Gap Creek
- Bullenbong Creek
- Sandy Creek
- Cowabbie Creek.

CatchmentSIM was used to automatically calculate key hydrologic properties for each subcatchment in WBNM. WBNM incorporates a non-linear routing calculation to account for routing of flows along watercourses within each subcatchment.

Historic rainfall for the Beavers Creek at Mundowey gauge (410137) was applied to the WBNM models. This gauge was selected as it is centrally located to each WBNM model, and it includes recorded rainfall for all calibration and validation floods.

As there are no stream gauges located within the WBNM model areas, it was not possible to complete a direct calibration of the WBNM models against historic stream flow records. Therefore, a joint validation was performed with the TUFLOW hydraulic model using the gauge inflows only and gauge inflows plus WBNM inflows. Then, the simulated flow and water level hydrographs at the Berembed Weir and Beavers Creek at Mundowey stream gauges were compared with and without the WBNM flows to understand whether the WBNM inflow provided an improved reproduction of the recorded water level information.

The simulated inundation extents for each of the WBNM tributaries were compared against Sentinel and Landsat flood imagery to confirm the inflows, and when combined with the TUFLOW model results, were providing reasonable reproduction of the observed inundation extents. This comparison was limited by the availability of flood imagery for these tributaries.

Hydraulic model calibration and validation

The hydraulic models were calibrated and validated using selected historic flood events that are around the design flood magnitude and are likely to activate all flood flow paths.
The following flood events were used for calibration and validation:

- March 2012 flood event as the large calibration event (the large design flood)
- October 2016 flood event as the small calibration event (the small design flood)
- November 2022 flood event as the validation event.

The models were calibrated against a range of data sources, particularly:

- peak flood heights at streamflow gauge locations
- available flow distribution calculations for the existing non-statutory floodplain development guidelines
- the peak discharge magnitude and timing at streamflow gauge locations
- flood extents from satellite imagery and aerial photography.

A summary of the peak recorded flows and water levels during the 2016, 2012 and 2022 flood events for calibration and validation of the hydraulic models is presented in Table 5.

Table 5. Peak recorded flows and water levels during selected flood events for calibration and validation of hydraulic models

<table>
<thead>
<tr>
<th>Gauge</th>
<th>2016 flood water level (mAHD*)</th>
<th>2016 flood flow (ML/day)</th>
<th>2012 flood water level (mAHD)</th>
<th>2012 flood flow (ML/day)</th>
<th>2022 flood water level (mAHD)</th>
<th>2022 flood flow (ML/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murrumbidgee River @ Narrandera</td>
<td>145.40</td>
<td>82,275</td>
<td>146.38</td>
<td>212,164</td>
<td>145.89</td>
<td>136,027</td>
</tr>
<tr>
<td>Murrumbidgee River @ Darlington Point</td>
<td>125.03</td>
<td>67,438</td>
<td>125.61</td>
<td>107,875</td>
<td>125.47</td>
<td>96,684</td>
</tr>
<tr>
<td>Yanco Creek @ Morundah</td>
<td>128.09</td>
<td>5,262</td>
<td>129.00</td>
<td>7,846</td>
<td>128.60</td>
<td>10,282</td>
</tr>
<tr>
<td>Columbo Creek @ Morundah</td>
<td>128.15</td>
<td>2,490</td>
<td>128.41</td>
<td>4,038</td>
<td>128.22</td>
<td>2,878</td>
</tr>
<tr>
<td>Murrumbidgee River @ Hay</td>
<td>86.92</td>
<td>55,057</td>
<td>87.20</td>
<td>66,378</td>
<td>87.34</td>
<td>73,794</td>
</tr>
<tr>
<td>Murrumbidgee River @ Balranald</td>
<td>61.14</td>
<td>30,103</td>
<td>61.05</td>
<td>26,026</td>
<td>61.45</td>
<td>46,659</td>
</tr>
</tbody>
</table>

*mmAHD means elevation in metres with respect to the Australian Height Datum.

A summary of the hydraulic models’ calibration results is presented in Table 6.
Table 6. Summary of hydraulic models’ calibration results for peak inundation depth differences (metres)

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Small calibration event</th>
<th>Large calibration event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murrumbidgee River @ Narrandra</td>
<td>-0.1</td>
<td>-0.06</td>
</tr>
<tr>
<td>Murrumbidgee River @ Darlington Point</td>
<td>0.04</td>
<td>-0.19</td>
</tr>
<tr>
<td>Yanco Creek @ Morundah</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Columbo Creek @ Morundah</td>
<td>-0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Murrumbidgee River @ Carrathool</td>
<td>-0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Murrumbidgee River @ Hay</td>
<td>-0.27</td>
<td>-0.04</td>
</tr>
<tr>
<td>Murrumbidgee River @ Balranald</td>
<td>0.11</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Overall, the TUFLOW model results agreed well with recorded in-bank flow estimates and agree with documented flood extents.

Hydraulic model outputs

The hydraulic model outputs used to develop the floodway network included:
- depth-velocity product maps for the large design flood (March 2012, Figure 9).
- inundation extents for the small design flood (October 2016) and the large design flood (March 2012).

A depth-velocity product is derived by multiplying the modelled depth and velocity results at each calculation point. This is used to indicate areas of high flow (deep and fast flowing) throughout the floodplain.

These outputs were used to determine the appropriate size of each floodway and the overall floodway network. In areas where hydraulic data was not sufficient to accurately map the flood extents, the limits to the floodway networks were determined by using aerial and satellite flood imagery captured for the design flood events.
1.5. Mapping the floodway network

1.5.1 Hydraulic criteria

The small and large design floods provide the hydraulic basis for delineating the floodway network. The hydraulic criteria that were used to delineate the floodway network are described in Table 7.

Table 7. Summary of the criteria used to delineate the hydraulic categories in the floodway network

<table>
<thead>
<tr>
<th>Hydraulic category</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Floodways | • Areas that have a depth-velocity product of greater than or equal to 0.2 m²/s for the large design flood (March 2012)
 • Areas that support tributary flows and outer floodplain floodways that have a depth velocity product of greater than or equal to 0.15 m²/s for the large design flood (March 2012)
 • Parts of the small design flood extent (October 2016) that ensure continuity of floodways |
Hydraulic Category

<table>
<thead>
<tr>
<th>Hydraulic Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inundation extent</td>
<td>• Flood extent of the small design flood (October 2016) and the large design flood (March 2012)</td>
</tr>
<tr>
<td></td>
<td>• In areas outside the hydraulic model extent flood imagery from the 2012 flood event derived from Sentinel and Landsat imagery.</td>
</tr>
<tr>
<td>Areas outside of the floodway network</td>
<td>• Flood fringe areas outside the large design flood (March 2012) extent</td>
</tr>
<tr>
<td></td>
<td>• Floodplain area enclosed by existing flood works that were not designed to be overtopped by floodwater.</td>
</tr>
</tbody>
</table>

Hydraulic modelling outputs may not always account for all the important floodways. As such, additional data is used to ensure that the floodway network represents on-ground conditions. The following information was used to validate the floodway network:

- flood aerial photography and satellite imagery
- spatial watercourse layers
- non-statutory rural floodplain development guidelines
- local knowledge from floodplain communities, and floodplain and environmental managers
- existing flood work development.

1.5.2 Floodways

Floodways in the proposed Murrumbidgee Valley Floodplain were mapped using the outputs of the hydraulic models, in particular the depth-velocity products from the large design flood (March 2012).

Floodways derived from the target depth-velocity threshold were compared with the inundation extent of the small design flood (October 2016). This comparison was undertaken to ensure that areas of the floodplain activated during small floods were identified as floodways, irrespective of whether they reached the selected depth-velocity threshold. Such areas are also likely to be the first floodways activated during large flood events and may be important for connecting flood-dependent ecological and cultural assets to floodwater during smaller floods.

1.5.3 Inundation extent

The hydraulic modelling also produced the inundation extent of the large design flood (March 2012) across the floodplain. Where the flood extent was reliable via confirmation with observed data, its outer limits were used to determine the extent of the floodway network.

Areas within the extent of the large design flood are considered important for providing temporary pondage during large floods. Areas beyond the extent of the design flood may also be flood-prone...
but would only become inundated during larger floods including extreme events and would generally have low conveyance or pondage capacity.
Appendix 2 First Nations consultation

The department held multiple information sessions with First Nations communities across the proposed Murrumbidgee Valley Floodplain between June 2023 and March 2024. An overview of the engagement activities completed to-date is provided in Table 8.

The purpose of this targeted engagement was to identify or confirm Aboriginal cultural assets and values on the floodplain, which is a key step in the development of the draft FMP, and to raise awareness about how FMPs can protect Aboriginal cultural assets and values. The Heritage NSW division also provided information on AHIMS that is used to support the development and implementation of an FMP.

The department will continue to liaise with First Nations communities in the Murrumbidgee Valley Floodplain throughout the development of the draft FMP. This will include updates via the department’s Southern Regional Aboriginal Water Committee.

Table 8. Overview of First Nations engagement sessions to-date

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Who</th>
<th>Nation</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 August 2023</td>
<td>Narrandra</td>
<td>Narrandera Local Aboriginal Land Council and community</td>
<td>Wiradjuri</td>
<td>3</td>
</tr>
<tr>
<td>23 November 2023</td>
<td>Narrandra</td>
<td>Narrandera Local Aboriginal Land Council and community</td>
<td>Wiradjuri</td>
<td>3</td>
</tr>
<tr>
<td>23 August 2023</td>
<td>Darlington Point</td>
<td>Griffith Local Aboriginal Land Council and community</td>
<td>Wiradjuri</td>
<td>4</td>
</tr>
<tr>
<td>22 November 2023</td>
<td>Darlington Point</td>
<td>Griffith Local Aboriginal Land Council and community</td>
<td>Wiradjuri</td>
<td>4</td>
</tr>
<tr>
<td>27 September 2023</td>
<td>Hay</td>
<td>Hay community, Hay Local Aboriginal Land Council, Nari Nari Tribal Council</td>
<td>Nari Nari</td>
<td>7</td>
</tr>
<tr>
<td>14 February 2024</td>
<td>Hay</td>
<td>Hay community, Hay Local Aboriginal Land Council, Nari Nari Tribal Council</td>
<td>Nari Nari</td>
<td>7</td>
</tr>
<tr>
<td>26 September 2023</td>
<td>Balranald</td>
<td>Balranald Local Aboriginal Land Council and community</td>
<td>Muthi Muthi</td>
<td>11</td>
</tr>
<tr>
<td>6 March 2024</td>
<td>Balranald</td>
<td>Balranald Local Aboriginal Land Council and community</td>
<td>Muthi Muthi</td>
<td>11</td>
</tr>
<tr>
<td>21 November 2023</td>
<td>Wagga Wagga</td>
<td>Southern Regional Aboriginal Water Committees (introduction)</td>
<td>Multiple</td>
<td>25</td>
</tr>
</tbody>
</table>
Feedback received

A summary of the feedback received from First Nations communities in the proposed Murrumbidgee Valley Floodplain is provided in Table 9. First Nations communities in Narrandera, Darlington Point, Hay and Balranald, as well as the NSW Heritage AHIMS team, were consulted on the feedback summarised in Table 9 and agreed to its inclusion in this report.

Table 9. Summary of feedback received from First Nations communities in the Murrumbidgee Valley floodplain and the department’s response.

<table>
<thead>
<tr>
<th>Feedback received</th>
<th>Response from the department</th>
</tr>
</thead>
<tbody>
<tr>
<td>All effort must be made to consult with Traditional Owners as well as members of the Local Aboriginal Land Councils.</td>
<td>The department will continue to identify and contact Traditional Owners to ensure they are included in all consultation as part of developing floodplain management plans in the southern Murray-Darling Basin.</td>
</tr>
<tr>
<td>There is a common desire amongst First Nations communities to protect and care for Aboriginal cultural assets and values that are located on private properties. However, this cannot be done due to a lack of access.</td>
<td>While floodplain management plans do not deal with access, they can raise awareness of the value of Aboriginal cultural assets to First Nations people and the broader community. The department acknowledges that healthy waterways and floodplains are critical to the culture and wellbeing of Aboriginal people. Where possible, the department will encourage local landholders to build relationships with local First Nations communities to work together to care for cultural assets and values on the floodplain that, in turn, can provide social and economic benefits to the community.</td>
</tr>
</tbody>
</table>
| Aboriginal cultural assets recorded in AHIMS are being damaged or destroyed during development processes. Communities are concerned about being involved in the development process. | The National Parks and Wildlife Act 1974 protects Aboriginal cultural heritage in NSW. An Aboriginal Heritage Impact Permit is required for any activity or works where harm to an Aboriginal object or place cannot be avoided. This means that development proposals must consider impacts on Aboriginal cultural heritage. For further information about current development applications, please contact the local council in your area. To report damage or harm to an Aboriginal cultural asset contact the Environment Line:
 • By phone: 131 555 (24 hours a day, 7 days a week)
 • By email: info@epa.nsw.gov.au
In relation to floodplain management, as part of assessing and determining an application for a flood work approval, a search of AHIMS must be conducted. In AHIMS, site information can be restricted so that culturally sensitive information is not shared publicly. Heritage NSW can provide assistance to facilitate communication between a landholder and the relevant knowledge holder/Elders in the event that a restricted Aboriginal cultural site is identified within or near a proposed flood work. Floodplain management plans provide an opportunity to improve public awareness of the value of Aboriginal cultural assets on the... |
<table>
<thead>
<tr>
<th>Feedback received</th>
<th>Response from the department</th>
</tr>
</thead>
<tbody>
<tr>
<td>floodplain as it relates to the health and wellbeing of First Nations people, and in turn foster greater stewardship of these cultural assets.</td>
<td>The Natural Resources Access Regulator (NRAR) is responsible for compliance and enforcement of flood works. As part of developing the draft FMP, all flood works are being identified and their approval status reviewed. This information will be provided to NRAR when complete. More information is available in the June 2023 consultation outcomes report that is published on the department’s website.</td>
</tr>
<tr>
<td>Earth works such as levee banks in some locations are restricting flows during flood events preventing wetlands from receiving the water they need to thrive.</td>
<td>A lot of First Nations people are aware of AHIMS but were unsure on how to use it, including how to use the mobile app. Consequently, many sites are not yet recorded in AHIMS. Heritage NSW will continue to provide support to individual communities where required to add objects or places to AHIMS. For further information, please contact heritageinbox@environment.nsw.gov.au or phone (02) 9873 8500. Poor mobile phone coverage when out on Country makes it difficult to record the location of Aboriginal cultural assets and values in AHIMS. Heritage NSW will provide support to individual communities to supply a GPS unit to allow recording in areas with poor mobile phone coverage. For further information, please contact heritageinbox@environment.nsw.gov.au or phone (02) 9873 8500. It is difficult for many First Nations people, including Elders, to attend information sessions and meetings that are held during regular business hours due to work commitments. Where possible, the department will plan to host future events later in the afternoon or early evening to ensure that more people can attend information sessions and have their say. First Nations communities are concerned about how water is managed, including the ownership of cultural access licences. Floodplain management plans do not deal with the take of floodplain water, that is dealt with in water sharing plans. The department is committed to improving water management in NSW by giving greater recognition to Aboriginal water rights and interests as well as improving access to and ownership of water for cultural, spiritual, social, environmental and economic benefit to communities. This work is happening through the Aboriginal Water Program. Information about cultural water access for Aboriginal people is available on the department’s website. Support is also available from the department’s Regional Aboriginal Engagement team by emailing awp.engagementteam@dpie.nsw.gov.au</td>
</tr>
</tbody>
</table>
Appendix 3 Ecological asset identification and categorisation

Identifying ecological assets

Two types of flood-dependent ecological assets have been identified in the proposed Murrumbidgee Valley Floodplain: wetlands and other floodplain ecosystems.

Wetlands and other floodplain ecosystems include the flood-dependent vegetation communities that were identified and categorised into hydro-ecological functional groups according to the surface water requirements of the dominant or canopy species in the floodplain vegetation community, including:

- semi-permanent (non-woody) wetlands
- floodplain wetlands (flood-dependent shrubland wetlands)
- other floodplain ecosystems, including flood-dependent forest/woodland (wetlands) and flood-dependent woodlands.

Ecological asset type – wetlands

Vegetation mapping including the State Vegetation Type Map\(^2\), the Nimmie Caira Ecological Assessment\(^3\) and Thelangerin Addition to Lachlan Valley State Conservation Area and Lachlan Valley National Park vegetation survey\(^4\) of plant community types (PCTs) and several wetland studies were predominantly used to identify wetlands. PCTs identify recurring patterns of native plant species assemblages in relation to environmental conditions. More information about NSW plant community type classification is available on the department’s website.

The following previous wetland studies and datasets have been identified:

- Mid-Murrumbidgee wetland mapping\(^5\)

\(^5\) Hall, A., Duffy, D., Horta, A and Wassens, S (2023) Improving wetland boundary accuracy by state of art spatial knowledge, Gulbal Institute, Spatial Data Analysis Network, Charles Sturt University, Albury. NSW Final Report to Department of Planning and Environment 2023
• Wetlands, Gundagai to Hay
• Yanco Creek Wetlands
• Directory of Important Wetlands in Australia
• Wetlands of the Lachlan River Catchment vs1.0
• NSW Hydro Area dataset which contains delineations of named wetlands
• NSW Landuse 2017 dataset which contains delineations of marsh/wetlands and lakes.

The State Vegetation Type Map, Porteners 2013 and Biosis 2014 mapping of PCTs supersedes the vegetation mapping that was used to identify flood dependent ecosystems as a part of the design process for the floodway network for the existing localised FMP. More information about the reliability and spatial precision of the State Vegetation Type Map is available on the department’s website.

The department is committed to using the best available information in the development of the draft FMP. When newer ecological asset data becomes available in the short-term, this will be considered in the development of the draft FMP and further community feedback will be sought during Stage 2 public exhibition.

Wetlands of national and international importance

The following wetlands within the proposed Murrumbidgee Valley Floodplain are listed in the Directory of Important Wetlands in Australia:

- Lowbidgee Floodplain (NSW021)
- Mid Murrumbidgee Wetlands (NSW052).

A small area of the Great Cumbung Swamp (NSW045) is located on the edge of the proposed Murrumbidgee Valley Floodplain. The majority of the Great Cumbung Swamp will be included in the proposed Lachlan Valley Floodplain.

Wetland plant communities

Wetlands within the proposed Murrumbidgee Valley Floodplain include semi-permanent (non-woody) wetlands and floodplain (flood-dependent shrubland) wetlands. The plant community types that make up these hydro-ecological functional groups and their watering requirements are shown in Table 10.

7 Webster, R (2007) Investigation into potential water savings from the Yanco Creek System (Off-take to Yanco Bridge) Wetlands by Rick Webster 2007
Lignum swamps are a priority for the NSW and Commonwealth Governments outlined in the Murrumbidgee Long Term Water Plan10, the Murrumbidgee Valley Water Plan 2023-2411 and the Basin-wide environmental watering strategy12.

\begin{itemize}
 \item 11 Commonwealth of Australia 2023, Commonwealth Environmental Water Holder Water Management Plan 2023–24, Canberra. CC BY 4.0. ISBN 978-1-76003-434-4
\end{itemize}
Table 10. Wetlands – Plant community types in the Murrumbidgee Valley Floodplain and their watering requirements

<table>
<thead>
<tr>
<th>Wetlands by sub-type</th>
<th>Plant community type name (ID)</th>
<th>Ideal watering frequency (average recurrence interval)*</th>
</tr>
</thead>
</table>
| Semi-permanent (non-woody) wetlands | • Shallow marsh wetland of regularly flooded depressions on floodplains mainly in the semi-arid (warm) climatic zone (mainly Riverina Bioregion & Murray Darling Depression Bioregion; PCT 12)
• Swamp grassland wetland of the Riverine Plain (PCT 47)
• Shallow freshwater wetland sedgeland in depressions on floodplains on inland alluvial plains and floodplains (PCT 53)
• Common Reed - Bushy Groundsel aquatic tall reedland grassland wetland of inland river systems (PCT 181)
• Cumbungi rushland wetland of shallow semi-permanent water bodies & inland watercourses (PCT 182)
• Permanent and semi-permanent freshwater lakes wetland of the inland slopes and plains (PCT 238)
• Rush - Sedge - Common Reed mainly lentic channel wetland of the Upper Murray and mid-Murrumbidgee River floodplains in the NSW South Western Slopes Bioregion (PCT 336) | 1 in 1-2 years |
| Floodplain wetland (flood-dependent shrubland) wetland | Lignum shrubland wetland of the semi-arid (warm) plains (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 17) | 1 in 1–3 years to 1 in 7–10 years |
| Floodplain wetland (flood-dependent shrubland) wetland | Canegrass swamp tall grassland wetland of drainage depressions, lakes and pans of the inland plains (PCT 24) | 1 in 2-3 years to 1 in 5-7 years |
| Floodplain wetland (flood-dependent shrubland) wetland | Nitre Goosefoot shrubland wetland on clays of the inland floodplains (PCT 160) | 1 in 1–2 years to 1 in 2–7 years |
| Floodplain wetland (flood-dependent shrubland) wetland | River Coobah tall shrubland wetland of the floodplains in the Riverina Bioregion and Murray Darling Depression Bioregion (PCT 240) | 1 in 3-7 years |
| Floodplain wetland (flood-dependent shrubland) wetland | Lignum shrubland wetland on regularly flooded alluvial depressions in the Brigalow Belt South Bioregion and Darling Riverine Plains Bioregion (PCT 247) | 1 in 1–3 years to 1 in 7–10 years |

*Refers to the frequency at which a flow event is required to maintain the ecological character of the wetland, expressed as an average recurrence interval (the long-term average number of years between a flood event). Adapted from the Murrumbidgee Long Term Water Plan.

Ecological asset type – other floodplain ecosystems

The State Vegetation Type Map, Porteners 2013 and Biosis 2014 mapping of plant community types (PCTs) and several wetland studies was predominantly used to identify other floodplain ecosystems.
Other floodplain ecosystems within the proposed Murrumbidgee Valley Floodplain include flood-dependent forest/woodland (wetlands) and flood-dependent woodlands. The plant community types that make up these hydro-ecological functional groups and their watering requirements are shown in Table 11.

River Red Gum woodlands and Black Box woodlands are target ecological populations in the *Water Sharing Plan for the Murrumbidgee Regulated River Water Source 2016* and are a priority for the NSW and Commonwealth Governments outlined in the *Murrumbidgee Long Term Water Plan* and the Basin-wide environmental watering strategy.

Table 11. Other floodplain ecosystems – Plant community types in the Murrumbidgee Valley Floodplain and their watering requirements

<table>
<thead>
<tr>
<th>Other floodplain ecosystems by sub-type</th>
<th>Plant community type name (ID)</th>
<th>Ideal watering frequency (average recurrence interval)*</th>
</tr>
</thead>
</table>
| Flood-dependent forest/woodland (wetland) | - River Red Gum-sedge dominated very tall open forest in frequently flooded forest wetland along major rivers and floodplains in south-western NSW (PCT 2)
- River Red Gum herbaceous-grassy very tall open forest wetland on inner floodplains in the lower slopes sub-region of the NSW South Western Slopes Bioregion and the eastern Riverina Bioregion (PCT 5)
- River Red Gum - Warrego Grass - herbaceous riparian tall open forest wetland mainly in the Riverina Bioregion (PCT 7)
- River Red Gum - Lignum very tall open forest or woodland wetland on floodplains of semi-arid (warm) climate zone (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 11) | 1 in 1–3 years |
| Flood-dependent forest/woodland (wetland) | - River Red Gum - Warrego Grass - Couch Grass riparian tall woodland wetland of the semi-arid (warm) climate zone (Riverina Bioregion and Murray Darling Depression Bioregion; PCT 8)
- River Red Gum - wallaby grass tall woodland wetland on the outer River Red Gum zone mainly in the Riverina Bioregion (PCT 9)
- River Red Gum - Black Box woodland wetland of the semi-arid (warm) climatic zone (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 10)
- Yellow Box – River Red Gum tall grassy riverine woodland of NSW South Western Slopes Bioregion and Riverina Bioregion (PCT 74)
- River Red Gum swampy woodland wetland on cowals (lakes) and associated flood channels in central NSW (PCT 249) | 1 in 2–4 years |
Other floodplain ecosystems by sub-type

<table>
<thead>
<tr>
<th>Plant community type name (ID)</th>
<th>Ideal watering frequency (average recurrence interval)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood-dependent woodlands</td>
<td></td>
</tr>
<tr>
<td>• Black Box - Lignum woodland wetland of the inner floodplains in the semi-arid (warm) climate zone (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 13)</td>
<td>1 in 3–7 years to 1 in 5–10 years</td>
</tr>
<tr>
<td>• Black Box grassy open woodland wetland of rarely flooded depressions in south western NSW (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 16)</td>
<td></td>
</tr>
<tr>
<td>• Black Box open woodland wetland with chenopod understorey mainly on the outer floodplains in south-western NSW (mainly Riverina Bioregion and Murray Darling Depression Bioregion; PCT 15)</td>
<td></td>
</tr>
</tbody>
</table>

*Refers to the frequency at which a flow event is required to maintain the ecological character of the wetland, expressed as an average recurrence interval (the long-term average number of years between a flood event). Adapted from the Murrumbidgee Long Term Water Plan.

Consideration of water-dependent fauna and habitat in the identification of the flood-dependent ecological assets on the floodplain

The identification of the flood-dependent ecological assets within the proposed Murrumbidgee Valley Floodplain includes consideration of key habitat features for water-dependent fauna including areas of native fish passage, observed waterbird breeding habitat sites and drought refugia. The proposed floodway network aims to provide for the adequate passage of floodwater to these areas to maintain their ecological value.