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Executive summary 
The New South Wales Department of Climate Change Environment Energy and Water (the 
department) has adopted a risk-based methodology to account for climate variability and change 
in developing its regional water strategies, in which the risk assessment is informed by the use of 
stochastically generated long-term sequences that reflect climate variability beyond that 
contained within the instrumental record. An independent expert panel review of this climate risk 
method commended many aspects of the methodology, but recommended: 

• further review of the potential non-stationarity of historical climate data used to inform 
the stochastic models, to determine whether changes in climate in recent decades affect 
estimates of present-day climate risk compared with climate risk based on the whole 
observed record, by 
– assessing non-stationarity of the historical record 
– split sample testing of the stochastic model 

• further articulation of the effects of multiple climate drivers, to develop the methodology 
for stochastic generation in regions where multiple climate drivers influence the regional 
hydroclimate. 

These recommendations are addressed in this report in the context of rainfall, evapotranspiration, 
and temperature for the southern basin, using a ‘multiple lines of evidence’ approach to 
determine the presence and potential causes of any non-stationarity. Specifically, this report 
documents a review of literature on the physical mechanisms influencing the regional climate of 
south-east Australia, reported trends in hydroclimatic variables, and future projections in this 
region. This review is complemented by a pilot study using data from the Ovens, Upper Murray, 
and Snowy catchments to assess trends in historical record and implications for stochastic 
simulations generated using the data. The pilot analysis used 49 rainfall time series and 
30 evapotranspiration time series from these catchments, and 3 temperature time series at nearby 
locations from a homogenised dataset. The trends in seasonal and annual evapotranspiration, 
temperature and attributes of rainfall are studied using the Mann Kendall test. Split sample 
stochastic simulations are performed on the rainfall and evapotranspiration time series. 

The main findings are summarised below. 

Stationarity in temperature, rainfall and evapotranspiration 

Rainfall 

Literature documents decreasing trends in cool season (April to October) rainfall by 10–20% in 
south-east Australia since the mid-1990s, predominantly in autumn and early winter. There are 
accompanying decreasing trends in the number of wet days during the cool season. Literature 
documented that ‘the decline in rainfall across south-eastern Australia was at least partly 
attributable to climate change’ (CSIRO 2012, p. 4) and ‘drying across southern Australia cannot be 
explained by natural variability alone’ (CSIRO and BOM 2015, p.45). Victoria Climate Projections 
2019 (VCP19) project median annual rainfall decreases in the Ovens catchment during the 2020–
2039 period amounting to about 6% under the medium emission scenario and about 11% under 
the high emission scenario (uncertainty range from –3% to –18%), with respect to a 1986–2005 
baseline.  
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The results of the trend assessment using data from the pilot sites are in general agreement with 
literature, showing decreasing trends in cool season rainfall and the number of wet days. The 
median total autumn rainfall trends amount to –5.5% per decade at the pilot sites over the period 
from 1950 to 2018. Thus, multiple lines of evidence indicate that the historical rainfall record in 
this region is non-stationary due to the changes in the cool season. The pilot sites also show a 
short-term decline in spring (SON) rainfall and increase in intensity of extreme rainfall intensity. 
These trends are not in agreement with all literature, but consistent with regional studies in 
nearby catchments. 

Evapotranspiration 

Literature documents decreasing trends in pan evaporation over the period 1975–2002, whereas 
studies using more recent data (up to 2018) report insignificant increasing trends. There are long-
term increasing trends in annual Morton wet evapotranspiration at the pilot sites, whereas short-
term trends are insignificant. The pilot study results are not directly comparable with available 
literature based on pan evaporation data given differences in processes that drive pan 
evaporation and Morton wet evapotranspiration. Thus, non-stationarity in the historical record of 
evapotranspiration remains highly uncertain. VCP19 projects 8 to 10.8% increases in pan 
evaporation over the period 2020–2039. 

Temperature 

Literature documents temperature increases in the southern basin region, especially post-1960. 
The Climate Change in Australia initiative reports an increase of 0.8 °C in mean annual 
temperature in the Murray basin cluster (which contains the pilot catchments) over the period 
1910–2013 assuming a linear trend, with higher trends for temperature minimums than for 
maximums. This is broadly consistent with a mean annual temperature increase across Australia of 
just over 1 °C during the slightly longer period 1910–2018. Moreover, climate projections indicate 
that increases of 0.6–1.3 °C are expected in the Murray basin cluster in the near term (2020–2039) 
with respect to a 1986–2005 baseline. Trends in homogenised temperature sites near the pilot 
catchments are broadly consistent with these findings, with increases of 0.8–1.5 °C in maximum 
temperatures and 1.9–2.6 °C in minimum temperatures during the period 1913–2018. These 
multiple lines of evidence are in agreement that there is non-stationarity in the temperature 
record of the southern system. 

Influence of climate drivers on meteorological variables in 
the southern basin 
The documented influence of climate drivers on key meteorological variables in the southern 
basin is summarised in this report. The declining cool season rainfall is associated with an 
expansion of the tropics, increasing intensity of the subtropical ridge over the continent and 
positive trends in the Southern Annular Mode (SAM). Literature indicates that these changes in 
large-scale patterns during the cool season are at least partly attributable to climate change. 
Other climate drivers, notably El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), 
influence the interannual variability of regional rainfall, primarily affecting rainfall in winter and 
during the warm season (CSIRO 2012; CSIRO and BOM 2015; Hope et al. 2017). 
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The importance of stochastic generation calibration period 
on key statistics 
Consistent with the trend assessment, the split sample tests demonstrate that the period used for 
calibration can significantly influence the statistics of the simulated data. In particular, the split 
sample tests show that the Millennium Drought is a ‘high-leverage’ event, in the sense that 
statistics of the simulated rainfall can vary significantly depending on whether the drought is 
included in the calibration period or validation period.  

When the drought is included in the calibration period, the extent of similarity between the 
simulated rainfall and observed data following the drought is dependent upon the statistic and 
season under consideration. For example, inclusion of the drought in the calibration period brings 
the autumn rainfall in the simulated data close to recent (2010–2018) observations (reduction of 
biases in simulations from +24% to –4%) but can cause larger deviations in simulated summer 
rainfall from recent observations (increase in biases in simulations from +16% to +29%). 

The implication of non-stationarity is that the calibration period needs to be carefully considered 
in the context of any southern basin stochastic analysis, with the appropriate approach likely to 
depend on whether the objectives are to represent risk over historical, current or future periods. 

Recommendations for stochastic data generation 
The calibration period should be as long as possible while also providing consistency with the 
method of assessment of climate projections. NARCliM 1.5 (1950–2005) has a suitable minimum 
baseline length for hydrological studies, which is significantly longer than the NARCliM 1.0 
baseline. 

The complexity of change in climate attributes gives rise to the possibility that scaling by the 
application of change factors to seasonal or annual totals may not lead to appropriate 
adjustments of the other statistics. For this reason, quantile scaling methods should be applied in 
preference to simple scaling.  

The scaling approach should be applied to different RCMs rather than an ensemble mean given 
the likely variation between models. Due to the nonlinear nature of hydrological transformation, 
this approach will ensure that model uncertainty in hydrological estimates is suitably accounted 
for. 
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1 Introduction 
The department has adopted a risk-based methodology to account for climate variability and 
change in developing its regional water strategies. The method involves the use of stochastically 
generated long-term sequences of climate data to characterise the current climate, and the 
application of scaling factors to the stochastic data to generate future climate projections.  

The stochastic modelling uses historical (observed and reconstructed) records of daily rainfall, 
evapotranspiration and temperature to generate synthetic data for 10,000 years that reflect 
variability over the instrumental record from 1889 to 2018. The stochastic sequences provide 
insights into natural climate variability beyond the available observations. The scaling factors for a 
future climate are derived based on projections from the NSW and Australian Regional Climate 
Modelling (NARCliM) project and applied to the stochastic. 

The stochastic data generation methodology has been applied to multiple basins across New 
South Wales using a multisite stochastic data generator conditioned on the Interdecadal Pacific 
Oscillation (IPO) documented in Leonard and Westra (2020). A similar method is planned for data 
generation in the New South Wales southern basin region, shown in Figure 1. An independent 
expert panel review of the department’s climate risk method recommended that ongoing 
improvement of the stochastic generation methodology be given high priority. The panel 
recommended further work to understand the implications of the influence of multiple climate 
drivers, and the existence of non-stationarity in the instrumental record of the southern New 
South Wales region on stochastic time series generation. The work presented in this report 
addresses these questions. 

 

The southern basin region consists of water resource plan areas of the New South Wales Murray and Lower 
Darling, Murrumbidgee, and in parts, the Victorian Murray areas. 

Figure 1 Southern basin of New South Wales 
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The regional climate of south-east Australia is highly variable, and there is a strong a priori reason 
to suspect that key meteorological variables are likely to already be experiencing change in the 
southern system. Literature notes warming signals in mean temperatures that are distinguishable 
from the background interannual and low-frequency variability in this region (Ukkola et al. 2019). 
These temperature changes are consistent with expected changes due to global warming (Karoly 
and Braganza 2005; Jones 2012). The regional rainfall patterns exhibit substantial variability 
(CSIRO 2012; Hope et al. 2017) and are potentially affected by both natural and anthropogenic 
influences on the climate system. These influences on the changing patterns of rainfall in this 
region have been the subject of much focused research, especially since the Millennium Drought. 

Section 2 of the report briefly reviews literature on the influences of regional and large-scale 
climate drivers on precipitation1 patterns in south-east Australia, and the historical and expected 
changes in these influences, to assist in interpreting non-stationarity results in subsequent parts 
of this report. Section 3 summarises literature on the historical trends in climatic variables in this 
region and Section 4 summarises the future climate projections.  

Subsequently, a study using data from representative catchments in southern New South Wales 
and Victoria is undertaken to assess the observational record. The assessment involves an analysis 
of trends in the observed data from the pilot sites and split sample calibration and validation of 
stochastic replicates as recommended by the expert review panel. The results of this study are 
presented in Section 5 and are summarised in Section 6. Based on the review of literature and the 
results of the pilot study, options and recommendations are provided for stochastic data 
generation to characterise ‘historical’ and ‘current’ climates in south-east Australia in Section 7. 

 
 

1 Note that the report uses rainfall and precipitation synonymously. Where there is reference to literature of 
atmospheric processes, the cited literature may use precipitation more broadly than just referring to rainfall. 
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2 Large-scale patterns of variability 
and change relevant to south-east 
Australia 
The precipitation in south-east Australia exhibits substantial interannual and intra-seasonal 
variability, influenced by large-scale patterns of global ocean–atmosphere variability. Different 
moisture systems contribute to precipitation in this region. These include low pressure systems 
that bring in moisture from the regional oceans (the Pacific, Indian and Southern Oceans), north-
western cloud bands that originate in the Indian Ocean, eastern coastal troughs from northern 
Australia, and east coast low pressure systems (CSIRO 2012; Hope et al. 2017; Dowdy et al. 2019). 
The region exhibits a cool season precipitation regime, which is dominated by moisture 
contributions from southern westerlies. The circulation patterns in the southern oceans affect the 
location of subtropical ridges in the Australian mid-latitudes, which in turn influence the 
penetration of low-pressure systems from the south into the continent during the cool season. 

Thus, the precipitation in this region is influenced by the oceanic and atmospheric patterns in the 
Pacific, Indian and Southern Oceans, which collectively ‘modulate’ weather patterns by imparting 
long-term (generally interannual) persistence and mediate some (particularly circulation-related) 
aspects of the anthropogenic climate change signal on local weather patterns. The indicators of 
these patterns, typically referred to as climate ‘drivers’, are the El Niño Southern Oscillation 
(ENSO), the Indian Ocean Dipole (IOD), Southern Annular Mode (SAM), and the IPO. These drivers 
influence the regional rainfall in south-east Australia in different seasons and at different scales 
(CSIRO 2012; Hope et al. 2017).  

The current understanding of these influences is summarised in the following subsections. The 
summary is based on technical reports by the South Eastern Australian Climate Initiative (SEACI) 
(CSIRO 2012), the Climate Change in Australia initiative (CSIRO and BOM 2015; Timbal et al. 2015) 
and the Victorian Climate Initiative (VicCI) (DELWP 2016; Hope et al. 2017), and the Victorian 
Climate Projections 2019 (VCP19) (Clarke et al. 2019a). 

2.1 Influence of large-scale drivers: ENSO, IOD, SAM and 
IPO 
ENSO and IOD are dipole modes of ocean–atmosphere variability in the tropical Pacific and Indian 
Oceans. Positive values of IOD refer to higher sea surface temperatures in the western equatorial 
Indian Ocean. El Niño is the ENSO mode associated with higher sea surface temperatures in the 
eastern equatorial Pacific Ocean. Positive IOD and El Niño are associated with higher sea surface 
temperatures and tropical convective centres that are located farther from the Australian 
continent, leading to lower rainfall in Australia. ENSO and IOD are understood to influence the 
rainfall in south-east Australia primarily during winter and spring (CSIRO 2012; Hope et al. 2017). 

The SAM is a mode of mid- and high-latitude climate variability associated with north–south shift 
of the atmospheric mass between the polar region and the mid-latitudes. A positive value of SAM 
indicates a shift of mid-latitude storm tracks towards the South Pole. The SAM influences the 
rainfall over south-east Australia differently in different seasons. During winter, the shift of mid-
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latitude storm tracks towards the South Pole that occurs with a positive SAM is associated with 
reduced rainfall over south-east Australia. During the summer, a positive value of SAM is 
associated with increased onshore transport of tropical moisture in eastern Australia and a 
subsequent increase in the warm season rainfall. 

Thus, in general, positive SAM, positive IOD and El Niño events result in lower cool season rainfall 
in south-east Australia. The relationships are further complicated due to interactions between 
these modes. On decadal time scales, a pattern of Pacific climate variability – the IPO – affects the 
interannual variations associated with ENSO and IOD. When the IPO is in the negative phase (cold 
phase), variability of ENSO and IOD are weakened, and the coupling between them is also 
weakened. During this phase, the impacts of ENSO and IOD on eastern Australian rainfall is 
strengthened. The variability in SAM is also related to the ENSO, mainly during the warm season 
(Hope et al. 2017). 

2.2 Influence of east coast lows on the south-east coast 
In addition to the large-scale drivers outlined above, the precipitation in the south-east coast is 
influenced by low pressure systems known as east coast lows (ECLs) (Dowdy et al. 2019). ECLs are 
cyclonic systems that occur near the south-east coast due to both mid-latitude and tropical 
influences. These systems can occur during any time of the year, but are more common and 
intense during the cooler months (Dowdy et al. 2013). ECL-related rainfall events exhibit a spatial 
contrast since the rainfall from these events primarily occurs on the eastern coastal regions rather 
than inland areas because of the Great Dividing Range. These systems may also cause snowfall in 
the mountainous regions of south-east Australia (Fiddes et al. 2015). ECLs are associated with 
large rainfall events and multiple climate hazards on the south-east coast. These impacts have 
resulted in focused research in recent years to study the characteristics of ECLs, the influence of 
climate drivers on ECLs, and their expected changes into the future. 

Studies have characterised ECLs in observations using multiple climatic features and report a large 
interannual variability in the number of ECL systems in the historical record (Di Luca et al. 2015; 
Pepler et al. 2015). The relation between ECLs and large-scale climate drivers (ENSO, IOD and 
SAM) is reported to be generally weak, but some studies report mixed findings that indicate that 
some types of ECLs may potentially be related to SAM (Dowdy et al. 2013; Pepler et al. 2015). A 
warming climate is expected to result in fewer ECL-related rainfall events during the cooler 
months, while there are large uncertainties in the expected ECL changes during the warmer 
months. The historical record also shows a decline in the number of ECLs, but the trend is not 
significant (Dowdy et al. 2013; Pepler et al. 2015). 

Studies have examined the skill of regional climate models in simulating ECLs in historical and 
future scenarios. Regional simulations reproduce the climatology of ECLs (Di Luca et al. 2016), and 
future regional climate projections from NARCliM exhibit a decline in ECL frequency during the 
cooler months. The decreasing signal is reported to be robust in the different ensemble members 
and is consistent with the decreasing trend in the historical record and expected changes into the 
future (Pepler et al. 2016). 
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3 Climatic trends in the historical 
record of south-east Australia 
In this section, publications documenting the historical trends in precipitation, evaporation and 
temperature in south-east Australia are reviewed. This region broadly covers the mainland 
Australian region south of 33°S and east of 135°E and encompasses most of the southern basin 
that is the focus of this report. Although there are some differences in the region referred to as 
‘south-east’ in the literature, these latitude–longitude ranges are broadly consistent. 

3.1 Rainfall 
There is a well-documented decreasing trend in mean rainfall during the cool season, primarily 
during autumn, in south-east Australia. This trend is reported in studies since the mid-2000s; the 
reduction in cool season rainfall post mid-1990s influenced the long-term and medium-term 
mean precipitation trends in this region (Gallant et al. 2007). The reported trends in the attributes 
of precipitation are summarised in Table 1. 

Further research explored the climatic features that led to the reduction in precipitation. The cool 
season decline was a notable feature of the Millennium Drought that this region experienced 
from 1997 to 2009; the signal has persisted post the drought. Figure 2 shows the cool season 
(April to October) rainfall anomalies in south-east Australia from 1900 to 2018 from the 2018 
State of the Climate report (BOM and CSIRO 2019). The report documents that the southern half 
of Australia (south of 26°S) had below-average cool season rainfall in 17 of the 20 years from 
1999. The recent years with above-average rainfall (2010 and 2016) were generally associated 
with drivers of higher-than-usual rainfall across Australia (strong negative IOD in 2016; La Niña in 
2010) (BOM and CSIRO 2019). 

 

Anomalies are calculated with respect to 1961 to 1990 averages. 
Source: BOM and CSIRO 2019. 

Figure 2 Anomalies of April–October rainfall for south-east Australia (south of 33°S, east of 135°E 
inclusive) 
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The current understanding indicates that changes in large-scale atmospheric features influence 
the observed trends. ENSO and IOD primarily influence the rainfall in south-east Australia during 
winter and spring and they do not have a major impact on the autumn rainfall. Hence, these 
climate drivers are not thought to be the primary cause of the declining autumn rainfall (Timbal 
and Hendon 2011). The general consensus from SEACI and VicCI (CSIRO 2012; CSIRO and BOM 
2015; Hope et al. 2017) suggests that the decline in cool season rainfall is associated with the 
expansion of the tropics, and increasing intensity of the subtropical high located over the 
continent. Tropical expansion causes the mid-latitude storm tracks responsible for most of the 
cool season rainfall in south-east Australia to move further south. The tropical expansion and 
changes in the intensity of the subtropical high are also associated with positive trends in SAM, 
which indicate a poleward shift of the mid-latitude westerlies. 

These climatic changes and the precipitation trends in the region are at least partly attributable to 
global warming (CSIRO 2012; CSIRO and BOM 2015; Hope et al. 2017). Experiments using climate 
models indicate that expanding tropics can only be reproduced when global atmospheric 
changes in greenhouse gases, aerosols and depletion of stratospheric ozone are incorporated 
into global model simulations (Nguyen et al. 2018). Literature has studied the regional variation in 
Hadley circulation by dividing the globe into three ‘sectors’ based on centres of upper level 
tropical divergence (the upward branch of the Hadley circulation) (Nguyen et al. 2018). There is 
enhanced expansion of the Hadley circulation in the Asia–Pacific (Australian) sector compared to 
the African and South American sectors. This regional expansion is linked to the negative phase of 
the IPO, and may reduce when the IPO changes phase (Nguyen et al. 2018). Therefore, both 
natural variability and climate warming are understood to contribute to the declining rainfall 
trends in south-east Australia (Hope et al. 2017). 

While tropical expansion and trends in SAM appear to be the drivers of the cool season 
precipitation trend in this region, the influence of other drivers, such as the ENSO and IOD, are 
relevant with respect to the changes during warm season. A La Niña mode concurrent with a 
negative phase of the IOD is associated with the rainfall events during spring of 2010–11 that 
marked the end of the Millennium Drought. 
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Table 1 Summary of reported precipitation trends in the historical record of south-east 
Australia 
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Authors Dataset Period Region Index type Findings 

Gallant 
et al. 
(2007) 

Stations 
(95 across 
Australia) 

1910–
2005 
and 
1950–
2005 

Six 
regions in 
Australia 

• Total rain 
• Rain days 

(threshold = 
1 mm) 

• Mean rain per rain 
day 

• Extreme intensity, 
frequency, and 
proportion of the 
total (95th and 
99th percentile 
thresholds) 

• For the south-east region, 
long-term (1910–2005) 
results show decreasing 
trends in autumn in total 
rainfall and extreme intensity. 

• In the medium term (1950–
2005), autumn rainfall indices 
show decreasing trends in 
most characteristics of 
rainfall, except the extreme 
proportion indices which 
showed significant increasing 
trends. 

Alexander 
et al. 
(2007) 

0.25° x 
0.25° 
gridded 
data 

1910–
2005 
and 
1950–
2005 

Whole 
country 

• Annual and 
seasonal 
precipitation 

• Extremes (Max 1-
day, Max 5-day) 

• Number of heavy 
and very heavy 
precipitation days 

• Consecutive wet 
and dry days 

• Annual 
proportions from 
extremes 

• (Note: detailed 
results from these 
indices are not 
included in the 
publication) 

• Decreasing trends in autumn 
precipitation in south-east 
Australia during 1950–2005. 

• Trends in extremes are 
correlated with the trends in 
mean, in general, across the 
whole country. 

Taschetto 
and 
England 
(2009) 

Gridded 
BOM 
rainfall 
data at 
0.5° 
resolution 

1970–
2005 

Whole 
country 

• Annual and 
seasonal total 
rainfall 

• Frequency of 
moderate (up to 1 
SD from the 
mean), heavy 
(from 1 to 2 SD 
from mean), very 
heavy (more than 
2 SD from mean) 
rainfall events 

• Decreasing trends in rainfall 
over Victoria, southern South 
Australia and southern New 
South Wales during summer 
and autumn (stronger in 
autumn). Frequency of very 
heavy rainfall events during 
MAM also show a decline. 
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Authors Dataset Period Region Index type Findings 

Risbey 
et al. 
(2013) 

Average 
rainfall 
from 8 
stations in 
Mallee 
region in 
Victoria  

1956–
2009 

Mallee 
region in 
Victoria  

• Total rainfall 
during the cool 
season (Apr to 
Oct) 

• Decreasing trends in cool 
season rainfall. 

• Reported to be primarily 
associated with a decline in 
rainfall from cut-off lows. 

Theobald 
et al. 
(2016) 

Station 
data 

1958–
2012 

Snowy 
Mountains 

• Annual, cool 
season (Apr to 
Oct) and warm 
season (Nov to 
Mar) rainfall total 
and frequency of 
wet days 
(P > 1 mm) and 
heavy 
precipitation days 
(P > 10 mm) 

• Frequency and 
intensity of 
extreme 
precipitation 
(P > 90th 
percentile 
threshold) 

• Annual decreasing trends in 
the frequency of P > 10 mm 
events, but an increase in the 
total precipitation the events 
generate. The increase in 
precipitation from these 
events occurs during the 
warm season. 

• Annual intensity of extreme 
precipitation shows an 
increasing trend. 

Ukkola 
et al. 
(2019) 

Area 
average 
records 
from BOM 
for 6 
regions 
across 
Australia 

1900–
2018 

Whole 
country 

• Annual and 
seasonal totals 

• No significant trends in 
regional mean rainfall in 
south-east Australia. 

 

3.2 Pan evaporation 
The non-stationarity in historical evapotranspiration records is not well established. The available 
literature has used pan evaporation records to study trends post-1975. Earlier studies reported a 
decreasing trend in pan evaporation over the period 1975–2002 across the country, potentially 
caused by reduced atmospheric demand associated with decreasing wind speed or radiation 
(Roderick and Farquhar 2004). This trend is reduced or reversed (that is, to increasing trends or no 
trends) in more recent analyses, respectively using data up to 2016 (Stephens et al. 2018) and 
2018 (Ukkola et al. 2019), due to temperature driven changes in vapour pressure deficit. These 
reported trends are summarised in Table 3. 



19 

Table 2 Summary of reported evapotranspiration trends in the historical record of south-east 
Australia 

Authors Dataset Period Region Index type Findings 

Roderick 
and 
Farquhar 
(2004) 

30 BOM 
sites across 
the country 

1970–
2002 

Entire 
country 

Pan 
evaporation 

Decreasing trends over 
Australia primarily due to a 
decline in atmospheric 
demand, associated with 
declines in surface radiation 
or wind speed 

Stephens 
et al. 
(2018) 

41 BOM 
sites across 
the country 

1975–
2016 

Entire 
country 

Pan 
evaporation 

The declining trends 
detected earlier have 
reduced or become neutral 
in south-east Australia. The 
changes in trends from 
previous reports are due to 
increases in temperature 
driven vapour pressure 
deficits 

Ukkola 
et al. 
(2019) 

Area 
average 
monthly 
observations 
from BOM 

1975–
2018 

Whole 
country 

Pan 
evaporation 

No significant trends in 
south-east Australia 

3.3 Temperature 
Literature reports a warming signal in temperature records in south-east Australia, consistent with 
the expected changes due to global warming. Karoly and Braganza (2005) studied the trends in 
minimum (Tmin), maximum (Tmax) and mean daily temperatures in south-east Australia over a 
50-year period from 1954 to 2003, after removing the rainfall-related component of temperature 
variations. The study reports a clear anthropogenic warming signal in observed temperature 
trends in south-east Australia. Jones (2012) noted discrete step changes in minimum and 
maximum temperatures in south-east Australia and attributed these changes to episodes of 
anthropogenic regional warming. The study reports that the temperature data of south-east 
Australia was stationary from 1910 to 1967, followed by a series of step changes, 0.7 °C in Tmin in 
1968, 0.5 °C in Tmax in 1973 and 0.8 °C in Tmax in 1997, attributed to anthropogenic warming. 
The reported trends in temperature records in south-east Australia are summarised in Table 2, 
which shows increasing trends in mean, minimum and maximum temperatures over the region. 

Thus, there is a well-established warming signal in the temperature records in south-east 
Australia, especially post-1960. The Climate Change in Australia initiative reports an increase of 
0.8 °C in the Murray basin cluster (Timbal et al. 2015), which consists of most of the southern 
basin, over the 1910–2013 time period assuming a linear trend. The trends are higher for 
temperature minimums (total increase of 1 °C) than for maximums (total increase of 0.7 °C) The 
mean temperature over Australia has increased by just over 1 °C during the period 1910–2018 
and the Victorian mean historical changes over 1910–2018 reported by VCP19 (Clarke et al. 
2019a) is also just above 1 °C. 
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Table 3 Summary of reported temperature trends in the historical record of south-east 
Australia 

Authors Dataset Period Region Index type Findings 

Ashcroft 
et al. 
(2012) 

Daily data from 
103 stations 
across the 
country; 
monthly area-
averaged 
anomalies for 
states and 
Northern 
Territory 

1860–
1909, 
1910–
1959, 
1960–
2011 
and 
1860–
2011 

South-
east 
Australia 

• Annual, DJF 
and JJA 
means of 
Tmax, Tmin 

• Diurnal 
temperature 
range (DTR) 

Positive trends in annual, 
DJF and JJA Tmax and 
Tmin. Stronger trends in 
Tmax (1.12 °C) and Tmin 
(0.93 °C) post-1960 

Jones 
(2012) 

Homogenised 
temperature 
data on a 0.25° 
grid 

1910–
2010 

South-
east 
Australia 

• Annual 
means of 
Tmin and 
Tmax 

Positive step changes in 
Tmin and Tmax post-
1967 

Ukkola 
et al. 
(2019) 

Area average 
records from 
BOM for 6 
regions across 
Australia 

1910–
2018 

Whole 
country 

• Annual and 
seasonal 
mean 
temperature 

The mean air 
temperature trends 
during all seasons are 
positive and statistically 
significant in south-east 
Australia. The strongest 
trends are in summer 
(DJF, 0.015 °C/yr) and 
autumn (MAM, 
0.012 °C/yr) 
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4 Future climate projections for 
south-east Australia 
A summary of the future climate projections for this region is included as an alternative line of 
evidence to understand climatic non-stationarity. Climate projections for south-east Australia 
indicate future precipitation and temperature changes consistent with the trends in the current 
observational record; that is, warmer and drier in general, especially in the cool season. From 
climate model projections, positive values of the SAM and an increase in the number of positive 
IOD events are likely in the future, bringing drier conditions to south-east Australia during the 
cool season. The changes in ENSO and its interactions with the SAM and IOD into the future are 
currently unknown (CSIRO 2012; Clarke et al. 2019a). 

Future projections for the Murray basin cluster are documented as part of the Climate Change in 
Australia initiative (Timbal et al. 2015). This cluster includes most of the southern basin region that 
is the focus of this report. Climate projections indicate that increases of 0.6–1.3 °C are expected in 
the Murray basin cluster in the near term (2020–2039) with respect to a baseline of 1986–2005. 
The report considers the physical understanding of climatic relationships and results from 
downscaling future projections to conclude that there is high confidence that cool season rainfall 
will decline in future, but the magnitude of decline is very uncertain (Timbal et al. 2015). It is 
reported with high confidence that natural climate variability will remain the major driver of 
rainfall differences in the near term (2030) from the climate of 1986–2005. 

Climate projections from VCP19 include regional projections for the Ovens and Murray 
catchments (Clarke et al. 2019b) that are also used in the pilot study documented in Section 5 of 
this report. The key changes projected for these catchments are as follows. 

• Daily minimum and maximum temperatures are projected to continue to increase. An increase 
in Tmax of 1.0–1.9 °C (since 1990) is expected by the 2030s. 

• Rainfall is projected to be very variable but will continue to decline in winter and spring 
(medium to high confidence) and autumn (low confidence). 

• Intensification is expected of 1-in-20-year maximum daily extreme rainfall events. 

The VCP19 report projects changes under medium (RCP 4.5) and high (RCP 8.5) emission 
scenarios with respect to a baseline climate of 1986–2005. The changes are projected for 20-year 
periods up to 2090. The first period spans 2020 to 2039. Thus, ‘current’ climate at the time of 
writing this report (2023) sits within the period of these projections. The projected rainfall changes 
in the Ovens and Murray catchments reported by VCP19 are shown in Figure 3. 
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Bars show the 10th to 90th percentile range. Blue bars: results from the new downscaled modelling. Dark vertical 
line: median. Dark blue dots: individual models. Green bar (at bottom): results from all available modelling (high 
resolution and GCM) for comparison, at high emissions scenario, at 2090. 
Source: Clarke et al. 2019b. 

Figure 3 Projected changes (compared to 1986–2005) in annual mean rainfall in the Ovens and 
Murray catchments for medium emissions (top) and high emissions (bottom) 

The annual mean rainfall during 2020–2039 is projected to decrease with the largest declines 
during spring. The projected median change in annual rainfall is ‒6% (range of ‒12% to ‒4%) 
under the medium emissions scenario, and –11% (range of ‒18% to ‒3%) under the high 
emissions scenario, and further declines are anticipated in subsequent decades (Figure 3). The 
annual maximum temperatures are expected to increase by 1.1 °C under the medium emissions 
scenario and 1.4 °C under the high emissions scenario during 2020–2039; the projected changes 
in minimum temperatures are smaller in magnitude for the Ovens and Murray catchments. The 
projected annual changes in pan evaporation during 2020–2039 are positive, with a median 
change of 8% under the medium emissions scenario and 10.8% under the high emissions 
scenario. 
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5 Pilot study: assessment of the 
historical record 
The review of literature indicates the presence of non-stationarity in the historical record of 
south-east Australia, with some references attributing key aspects of change to anthropogenic 
climate change. A pilot study using data from a few representative catchments is undertaken to 
assess the presence of significant trends in the attributes of climatic variables and the implications 
for stochastic time series generation in the southern New South Wales region. As part of the 
assessment, a trend analysis is performed of the historical record of the pilot catchments and split 
sample testing of the stochastic model, according to the recommendations of the independent 
review panel. 

The focus of this pilot study was to analyse key time series provided by department that are used 
as inputs for hydrological modelling. As a result, interpretation of the pilot results needs to 
consider the following caveats. 

• The homogeneity of the data has not been reviewed in this analysis. For this reason, the 
results presented below can be used to assess non-stationarity of the analysed data but 
cannot be interpreted as a climate change attribution study. 

• The analysis uses data from a relatively small number of stations relative to other peer-
reviewed assessments of trends in key weather variables in south-east Australia, and thus is 
not suitable to assess large-scale drivers of change (for example, the effects of changes to 
circulation patterns) that present themselves when evaluating trends over larger geographical 
areas. 

For these reasons, results from this section should be considered in the context of the wider 
literature, as summarised in Sections 3 and 4, rather than viewed in isolation. 

5.1 Data 
Data from pilot sites located in the Upper Murray, Ovens and Snowy catchments, is shown in 
Figure 4. 
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Figure 4 Location of rainfall, evapotranspiration and temperature pilot sites 

Table 4 provides a summary of the data from the pilot sites which consists of precipitation, 
evapotranspiration (Mwet – the tag refers to Morton wet formulation), and minimum/maximum 
daily temperature (Tmin, Tmax) time series. All data were sourced from the SILO database. The 
time series span 130 years from 1 January 1889 to 31 December 2018 and there were no missing 
values (owing to predetermined infilling methods used to construct the data). 

Table 4 Summary of number of different observation time series by variable type 

Variable type 
Pilot basin 
 – Upper Murray 

Pilot basin 
 – Ovens 

Pilot basin 
 – Snowy 

SILO Rain 25 18 6 

SILO Mwet 5 18 7 

SILO Tmin/Tmax 0 18 8 
 

As described above, the analysis of trends using raw station observations of Tmax and Tmin is not 
advisable because signals of changes in instrument, methods of data collection, and station 
location may exist in the data (Trewin 2013). Such analyses are generally performed using 
homogenised temperature datasets. In the process of homogenisation, raw temperature data 
from multiple sites are examined visually and statistically to create homogenised datasets that 
minimise discrepancies across time (Ashcroft et al. 2012; Trewin 2013; Trewin et al. 2020). 

The Australian Climate Observations Reference Network – Surface Air Temperature dataset 
version 2 (ACORN–SAT v2) (Trewin et al. 2020) is one such high-quality dataset, prepared and 
made available by the Bureau of Meteorology, Australia. This data has been used in literature to 
study the changes in temperature in Australia (van Wijngaarden and Mouraviev 2016; Allen et al. 
2019), and thus analyses of data provided by the Department of Planning and Environment for 
the pilot sites are supplemented by an analysis of ACORN–SAT v2 data at key locations in the 
study area. 



25 

The temperature stations from the pilot sites are located in the Ovens and Snowy catchments. 
Three ACORN–SAT v2 stations are located in the vicinity of these sites, as shown in Figure 5. 

 

Figure 5 Location of pilot temperature sites and 3 ACORN–SAT v2 stations in the vicinity 

Homogenised data at pilot site 82039 (Rutherglen Research) is available from the ACORN–SAT v2 
dataset, so that the differences between the data using the 2 methods can be compared. Figure 6 
shows the differences in long-term trends calculated from the raw station data and the 
homogenised ACORN–SAT v2 data at the same site using 101 years’ data between 1913 and 
2018. There are major differences in the trends estimated from the 2 data sources. Such 
differences also exist in the short-term trends estimated from the 2 data sources at this site 
(Appendix A).  

These differences indicate that the site-level temperature observations from the pilot sites are 
unsuitable for the analysis of trends. While there is some debate on the homogenisation of 
temperature data (Marohasy and Abbot 2016), the use of homogenised data for assessment of 
trends is the existing globally accepted standard of analysis (Hewaarachchi et al. 2017; Squintu 
et al. 2019; Vincent et al. 2020). Therefore, a trend analysis is performed using the homogenised 
data from the 3 ACORN–SAT v2 stations located close to the pilot region (shown in Figure 5) as 
part of this study. The length of homogenised data records at each of these sites is listed in 
Table 5. 
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Blue trendlines indicate the presence of significant trends (at 5% level) using the Mann Kendall trend test. The 
data from 1960 to 1964 are missing at this site in the ACORN–SAT v2 data. 

Figure 6 Annual mean Tmax and Tmin at site 82039 (Rutherglen Research) from raw station data 
and homogenised ACORN–SAT v2 data with linear trendlines 

Table 5 ACORN–SAT v2 stations used for analysis 

Variable type Station number Period of record 

Tmax, Tmin 82039 8 November 1912 to 31 May 2019 

Tmax, Tmin 72150 1 January 1910 to 31 May 2019 

Tmax, Tmin 72161 1 January 1962 to 31 May 2019 

5.2 Methodology 

5.2.1 Trend detection 

The statistical significance of temporal trends in various attributes of the time series are assessed 
using a non-parametric Mann Kendall test at two-sided 5% significance level. The Mann Kendall 
test is a well-established technique employed in studies for assessment of hydroclimatic time 
series (Lavender and Abbs 2013; Theobald et al. 2016; Ukkola et al. 2019). The magnitude of 
significant trends is quantified using least squares regression, similar to the analysis performed by 
Theobald et al. (2016). 

While this approach can assess whether individual sites exhibit statistically significant trends, in 
multisite analyses there is often a non-negligible probability of detecting one or more individual 
sites with significant trends even under the null hypothesis of no trends (for example at the 5% 
significance level one would expect an average of 5 out of every 100 sites to experience 
statistically significant trends under the null hypothesis that there is no trend). As such, a field 
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significance test is used to determine whether the number of stations experiencing statistically 
significant trends is more than would be expected under the null hypothesis. The field significance 
of the trends are assessed in this study using a bootstrap resampling procedure (see, for example, 
Do et al. (2017)). The bootstrap procedure uses resampled data to obtain an estimate of the 
95th percentile value of the percentage of significant sites that may occur due to chance. If the 
percentage of sites exhibiting significant trends in the historical record exceeds this estimate, then 
the trends are considered field significant. 

The methodology used for the analysis of trends consists of the following steps: 

1. The significance of site-level trends is estimated using the Mann Kendall test. The proportion 
of sites that exhibit significant positive and negative trends in the historical record are 
calculated. 

2. The entire dataset is randomly resampled in time while preserving the spatial structure. The 
new resampled data therefore contains a new sequence of years (for example, {1967, 1954 
2003, 1895, 1920…}). The site-level significant trends in the resampled dataset are estimated 
using the Mann Kendall test and the proportion of sites that exhibit positive and negative 
trends are calculated as done in step 1. 

3. A bootstrapping procedure is used to repeat step 2 1,000 times. The samples are used to 
create a distribution of percentage of significant sites that may occur in the region due to 
chance. If the proportion of significant sites in the historical data (step 1) is higher than the 
95th percentile value of the proportion of significant sites that may occur due to chance, the 
historical trend is field significant. 

The attributes of rainfall, evaporation and temperature used for the trend analyses are listed in 
Table 6. These attributes are selected to comprise ‘hydrologically relevant’ features of the 
respective variables, which may have a bearing on hydrological response of the respective 
catchments. The trend analysis is performed using the entire dataset of 130 years (1889 to 2018) 
as well as a recent subset of the dataset, to enable comparison with existing literature. 
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Table 6 Attributes of hydroclimatic variables and the periods used for trend analyses 

Variable Attribute Definition Analysis period 

Rainfall Total Total annual and seasonal (DJF, MAM, JJA 
and SON) rainfall (mm) 

1889 to 2018 and 
1950 to 2018 

Rainfall Wet day rainfall Mean annual and seasonal wet day 
(P >= 1 mm) rainfall (mm/day) 

1889 to 2018 and 
1950 to 2018 

Rainfall Number of wet 
days 

Annual and seasonal number of wet days 
(P >= 1 mm) (days) 

1889 to 2018 and 
1950 to 2018 

Rainfall Heavy day rainfall Annual and seasonal heavy day 
(P >= 10 mm) rainfall (mm/day) 

1889 to 2018 and 
1950 to 2018 

Rainfall Number of heavy 
rainfall days 

Mean annual and seasonal heavy day 
(P >= 10 mm) rainfall (mm/day) 

1889 to 2018 and 
1950 to 2018 

Rainfall Mean dry spell 
duration 

Annual mean number of consecutive days 
with rainfall less than 1 mm (days) 

1889 to 2018 and 
1950 to 2018 

Rainfall Maximum dry spell 
duration 

Annual maximum number of consecutive 
days with rainfall less than 1 mm (days) 

1889 to 2018 and 
1950 to 2018 

Rainfall Extreme intensity Annual mean rainfall during days with 
rainfall greater than the 95th percentile 
(mm/day) 

1889 to 2018 and 
1950 to 2018 

Rainfall Extreme frequency Annual mean number of days with rainfall 
greater than the 95th percentile (days) 

1889 to 2018 and 
1950 to 2018 

Evapotranspi
ration 

Total 
evapotranspiration 

Total annual and seasonal (DJF, MAM, JJA 
and SON) evapotranspiration (mm) 

1889 to 2018 and 
1975 to 2018 

Temperature Mean temperature Annual and seasonal (DJF, MAM, JJA and 
SON) mean daily minimum temperature 
Annual and seasonal (DJF, MAM, JJA and 
SON) mean daily maximum temperature 

1913 to 2018 and 
1960 to 2018 

5.2.2 Split sample stochastic simulations 

The potential implications of non-stationarity on the results of stochastic analyses using split 
sample tests are assessed. This is achieved using a split sample methodology, in which the 
stochastic generation model is calibrated against one part of the time series (usually the earlier 
part of the record) and then validated against the other part of the record. This split sample 
approach provides an analogy to possible issues that could arise by calibrating a stochastic model 
against the full historical record and assuming it is representative of current or future conditions.  

The split sample stochastic simulations are performed using the precipitation and 
evapotranspiration (Mwet) data from the pilot sites to assess the ability of a stochastic model 
calibrated against the earlier part of the record to capture statistics corresponding to the later 
part of the record. The split sample tests are designed based on the recommendations of the 
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independent review panel and consist of ‘1990 reference’ and ‘drought reference’ experiments. 
These are defined as follows: 

• 1990 reference – The experiment uses data up to 1990 to calibrate the stochastic model and 
data after 1990 to validate stochastic simulations. 

• drought reference – The experiment includes data up to the end of the Millennium Drought 
(year 2009) to calibrate the model, and the remaining period data to validate the simulations. 

The calibration-validation tests are performed using the full record (1889 to 2018, 130 years) as 
well as a shorter period of data (1950 to 2018, 69 years) to assess the performance of the 
stochastic model while calibrated using different record lengths. Note that the year 1950 used 
here is selected arbitrarily to consider the potential of a using a shorter baseline (for example, 
corresponding to the NARCliM 1.5 baseline starting in 1950). In total the experiment suite consists 
of the 4 experiments shown in Figure 7. 

 

Figure 7 Split sample experiments 

The stochastic model used for the experiments is based on the latent variable model formulation 
documented in Bennett et al. (2018). The model implemented for this pilot study is not 
conditioned on the IPO and it is a single-site version of the spatial field rainfall model used for 
stochastic time series generation in the northern New South Wales basins (Leonard and Westra 
2020). The model is calibrated site-wise using observations from the calibration period and used 
to generate stochastic time series. Time series are generated for 100 replicates of data length 
corresponding to the validation period. 

The simulated data are compared to observations during both the calibration and validation 
periods for assessment of the split sample experiments. The comparison is based on the 
attributes of hydroclimatic time series that show major trends in the historical record identified 
using non-parametric trend testing at the pilot sites. The mean values of the attributes from the 
simulated data are compared to the mean values of observations from the calibration and 
validation periods at site level. The results are presented using histograms of the differences 
between the observations and simulations across all the pilot sites. 
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5.3 Results of non-parametric trend testing 

5.3.1 Trends in rainfall attributes 

Table 7 summarises the number of sites that exhibit significant trends in rainfall attributes during 
the different periods of analysis. The trends in the attributes of rainfall that are significant in both 
the long-term (1889 to 2018) and short-term (1950 to 2018) analyses are: 

• a decreasing trend in cool season totals 

• a decreasing trend in the number of wet days annually and during the cooler seasons of the 
year 

• an increasing trend in annual extreme rainfall intensity. 



Table 7 Number of sites that exhibit significant trends in annual and seasonal attributes of rainfall 
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Attribute  Trend  
1889 to 

2018 
ANN 

1889 to 
2018 
DJF 

1889 to 
2018 
MAM 

1889 to 
2018 
JJA 

1889 to 
2018 
SON 

1950 to 
2018 
ANN 

1950 to 
2018 
DJF 

1950 to 
2018 
MAM 

1950 to 
2018 
JJA 

1950 to 
2018 
SON 

Total rainfall (mm) Pos 5 (10%) 11 (22%) * 2 (4%) 2 (4%) 3 (6%) 1 (2%) 1 (2%) 0 (0%) 1 (2%) 0 (0%) 

Total rainfall (mm) Neg 8 (16%) 0 (0%) 6 (12%) 15 (31%) * 1 (2%) 13 (27%) * 0 (0%) 13 (27%) * 8 (16%) * 24 (49%) * 

Total rainfall (mm) None 36 (73%) 38 (78%) 41 (84%) 32 (65%) 45 (92%) 35 (71%) 48 (98%) 36 (73%) 40 (82%) 25 (51%) 

Mean wet day 
(P >= 1 mm) rainfall 
(mm/day) Pos 21 (43%) * 19 (39%) * 5 (10%) 8 (16%) 22 (45%) * 5 (10%) 6 (12%) 1 (2%) 2 (4%) 3 (6%) 

Mean wet day 
(P >= 1 mm) rainfall 
(mm/day) Neg 7 (14%) 0 (0%) 7 (14%) * 10 (20%) * 2 (4%) 7 (14%) 0 (0%) 4 (8%) 8 (16%) * 4 (8%) 

Mean wet day 
(P >= 1 mm) rainfall 
(mm/day) None 21 (43%) 30 (61%) 37 (76%) 31 (63%) 25 (51%) 37 (76%) 43 (88%) 44 (90%) 39 (80%) 42 (86%) 

Number of wet 
(P >= 1 mm) days Pos 7 (14%) 10 (20%) * 1 (2%) 3 (6%) 3 (6%) 0 (0%) 6 (12%) 0 (0%) 1 (2%) 0 (0%) 

Number of wet 
(P >= 1 mm) days Neg 19 (39%) * 3 (6%) 16 (33%) * 19 (39%) * 11 (22%) * 24 (49%) * 0 (0%) 26 (53%) * 10 (20%) * 29 (59%) * 

Number of wet 
(P >= 1 mm) days None 23 (47%) 36 (73%) 32 (65%) 27 (55%) 35 (71%) 25 (51%) 43 (88%) 23 (47%) 38 (78%) 20 (41%) 

Mean heavy day 
(P >= 10 mm) 
rainfall (mm/day) Pos 17 (35%) * 9 (18%) * 2 (4%) 7 (14%) * 27 (55%) * 7 (14%) * 4 (8%) 2 (4%) 2 (4%) 5 (10%) 

Mean heavy day 
(P >= 10 mm) 
rainfall (mm/day) Neg 2 (4%) 0 (0%) 0 (0%) 3 (6%) 0 (0%) 1 (2%) 0 (0%) 1 (2%) 1 (2%) 1 (2%) 

Mean heavy day 
(P >= 10 mm) 
rainfall (mm/day) None 30 (61%) 40 (82%) 47 (96%) 39 (80%) 22 (45%) 41 (84%) 45 (92%) 46 (94%) 46 (94%) 43 (88%) 
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Attribute  Trend  
1889 to 

2018 
ANN 

1889 to 
2018 
DJF 

1889 to 
2018 
MAM 

1889 to 
2018 
JJA 

1889 to 
2018 
SON 

1950 to 
2018 
ANN 

1950 to 
2018 
DJF 

1950 to 
2018 
MAM 

1950 to 
2018 
JJA 

1950 to 
2018 
SON 

Number of heavy 
rainfall 
(P >= 10 mm) days Pos 4 (8%) 15 (31%) * 1 (2%) 2 (4%) 6 (12%) 0 (0%) 1 (2%) 0 (0%) 1 (2%) 0 (0%) 

Number of heavy 
rainfall 
(P >= 10 mm) days Neg 6 (12%) 0 (0%) 5 (10%) 11 (22%) * 1 (2%) 15 (31%) * 0 (0%) 7 (14%) * 6 (12%) * 20 (41%) * 

Number of heavy 
rainfall 
(P >= 10 mm) days None 39 (80%) 34 (69%) 43 (88%) 36 (73%) 42 (86%) 34 (69%) 48 (98%) 42 (86%) 42 (86%) 29 (59%) 

Mean extreme 
(P > 95th 
percentile) rainfall 
(mm/day) Pos 15 (31%) * n/a 

n/a n/a n/a 

9 (18%) * 

n/a n/a n/a n/a 

Mean extreme 
(P > 95th 
percentile) rainfall 
(mm/day) Neg 1 (2%) 

n/a n/a n/a n/a 

1 (2%) 

n/a n/a n/a n/a 

Mean extreme 
(P > 95th 
percentile) rainfall 
(mm/day) None 33 (67%) 

n/a n/a n/a n/a 

39 (80%) 

n/a n/a n/a n/a 

Frequency of 
extreme (P > 95th 
percentile) rainfall 
days Pos 13 (27%) * 

n/a n/a n/a n/a 

3 (6%) 

n/a n/a n/a n/a 

Frequency of 
extreme (P > 95th 
percentile) rainfall 
days Neg 3 (6%) 

n/a n/a n/a n/a 

2 (4%) 

n/a n/a n/a n/a 
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Attribute  Trend  
1889 to 

2018 
ANN 

1889 to 
2018 
DJF 

1889 to 
2018 
MAM 

1889 to 
2018 
JJA 

1889 to 
2018 
SON 

1950 to 
2018 
ANN 

1950 to 
2018 
DJF 

1950 to 
2018 
MAM 

1950 to 
2018 
JJA 

1950 to 
2018 
SON 

Frequency of 
extreme (P > 95th 
percentile) rainfall 
days None 33 (67%) 

n/a n/a n/a n/a 

44 (90%) 

n/a n/a n/a n/a 

Maximum dry (P < 
1 mm) spell 
duration (days) Pos 0 (0%) 

n/a n/a n/a n/a 

13 (27%) * 

n/a n/a n/a n/a 

Maximum dry (P < 
1 mm) spell 
duration (days) Neg 31 (63%) * 

n/a n/a n/a n/a 

1 (2%) 

n/a n/a n/a n/a 

Maximum dry (P < 
1 mm) spell 
duration (days) None 18 (37%) 

n/a n/a n/a n/a 

35 (71%) 

n/a n/a n/a n/a 

Average dry (P < 
1 mm) spell 
duration (days) Pos 6 (12%) 

n/a n/a n/a n/a 

0 (0%) 

n/a n/a n/a n/a 

Average dry (P < 
1 mm) spell 
duration (days) Neg 13 (27%) * 

n/a n/a n/a n/a 

2 (4%) 

n/a n/a n/a n/a 

Average dry (P < 
1 mm) spell 
duration (days) 

None 30 (61%) n/a n/a n/a n/a 47 (96%) n/a n/a n/a n/a 

Pos = significant positive trend; Neg = significant negative trend; None = no significant trends; n/a = not applicable. 

*Asterisked, shaded cells indicate trends that are field significant (at 5% level). 
The values in brackets indicate the number of sites as a percentage of the total number of sites (49 sites). 

 



Based on these results, the significant trends in the various rainfall attributes are summarised as follows. 

• Annual and seasonal totals: The long-term (1889 to 2018) analysis shows negative trends in the 
JJA total rainfall and an increase in the DJF total. In the short-term (1950 to 2018) analysis, the 
decreasing trends are significant at a larger number of stations, and the declines occur in MAM, JJA 
and SON seasons. The highest number of stations show statistically significant declines in 
SON (49%). 

• Mean wet day rainfall: In the long-term analysis, positive trends in the mean wet day rainfall are 
field significant at the annual scale. The positive trends occur in DJF and SON; negative trends occur 
in the cool season (MAM and JJA). In the short-term analysis, only the negative trends in JJA are 
significant. 

• Number of wet days: In both the short-term and long-term analyses, negative trends are 
significant at the annual scale. In the long term, positive trends occur in DJF; negative trends during 
the MAM, JJA and SON seasons. In the short-term analysis, only the negative trends during MAM, 
JJA and SON are significant. The negative trends during MAM and SON occur at more stations. 

• Mean heavy day rainfall days and the number of heavy rainfall days: The trends in heavy rainfall 
intensity and frequency vary between the analyses performed at long and short timescales. In the 
long-term analysis, the prominent signal is an increase in mean heavy day rainfall during all seasons 
except MAM. In the short-term analysis, the prominent signal is a decrease in the number of heavy 
rainfall events in all seasons except DJF. 

• Intensity and frequency of extreme rainfall days: Both long-term and short-term analyses show 
an increase in the intensity of extreme rainfall days. The increase in frequency of extreme days is 
only significant in the long-term analysis. 

• Dry spell durations: Long-term analysis shows declining trends in the mean dry spell duration and 
maximum dry spell duration. The short-term analysis shows an increasing trend in maximum dry 
spell duration. 

No comparison is provided here of the trends at the pilot sites with literature that examined trends in 
precipitation characteristics using gridded datasets primarily for the purpose of assessing the fidelity of 
global climate models in capturing these trends (for example, Alexander and Arblaster 2009, 2017). The 
spatial scale of these studies is very different from the station-level analyses of trends at the pilot sites; 
hence comparison proves difficult, and potentially misleading. However, in general, the declining trends 
in cool season rainfall appear to be sufficiently widespread in spatial scale to be apparent in literature 
documenting analysis at both larger and finer spatial scales (Nicholls 2010; Theobald et al. 2016). 

Table 8 compares the trends in rainfall attributes to the trends reported in literature for the same region 
(summarised in Section 3) . The decreasing trend in cool season precipitation in the pilot sites is 
consistent with this reported decline in this region. The decreasing trends in the frequency of wet days 
during the cool season are also broadly consistent with the trends documented in the literature. The 
increasing trend in the annual intensity of extreme precipitation in the pilot sites does not appear to be 
as widespread spatially. The increasing trend in extreme intensity is consistent with literature focused on 
near catchments (Theobald et al. 2016), but inconsistent with literature documenting larger spatial scale 
analyses (Gallant et al. 2007). 



36 

Table 8 Trends in rainfall attributes in the pilot sites and the changes reported in literature 

Attribute Study or publication Period Annual Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 
Total rainfall Pilot study long 1889–2018 N I I I - - - WD WD WD N N N 
Total rainfall Gallant et al. (2007)a 1910–2005 N N N N WD WD WD N N N N N N 
Total rainfall Pilot study short 1950–2018 WD N N N WD WD WD D D D WD WD WD 

Total rainfall Gallant et al. (2007)a 1950–2005 N N N N WD WD WD N N N N N N 
Total rainfall Risbey et al. (2013) 1956–2009 n/a n/a n/a n/a n/a WD WD WD WD WD WD WD n/a 

Total rainfall Taschetto and England 
(2009)b 1970–2005 WD N N N WD WD WD N N N N N N 

Mean wet day 
rainfall Pilot study long 1889–2018 WI WI WI WI D D D I or D I or D I or D WI WI WI 
Mean wet day 
rainfall Gallant et al. (2007) a 1910–2005 N N N N N N N N N N N N N 
Mean wet day 
rainfall Pilot study short 1950–2010 N N N N N N N D D D N N N 
Mean wet day 
rainfall Gallant et al. (2007) a 1950–2005 N N N N WD WD WD N N N N N N 
Number wet days Pilot study long 1889–2018 WD I I I WD WD WD WD WD WD I I I 
Number wet days Gallant et al. (2007) a 1910–2005 N N N N N N N N N N N N N 
Number wet days Pilot study short 1950–2018 WD N N N WD WD WD D D D WD WD WD 

Number wet days Gallant et al. (2007) a 1950–2005 N N N N WD WD WD N N N N N N 

Number wet days Taschetto and England 
(2009) b,c 1970–2005 WD N N N 

WD WD WD 
N N N N N N 

Number wet days Theobald et al. (2016)d 1958–2012 N N N N N WD WD WD WD WD WD WD N 
Heavy day rainfall Pilot study long 1889–2018 WI I I I N N N I I I WI WI WI 
Heavy day rainfall Pilot study short 1950–2018 I N N N N N N N N N N N N 
Number of heavy 
rainfall days Pilot study long 1889–2018 N WI WI WI N N N D D D N N N 
Number of heavy 
rainfall days Pilot study short 1950–2018 WD N N N D D D D D D 

WD WD WD 

Number of heavy 
rainfall days 

Taschetto and England 
(2009) b,e 1970–2005 N N N N 

WD WD WD 
N N N N N N 

Number of heavy 
rainfall days Theobald et al. (2016) 1958–2012 N N N N N 

WD WD WD WD WD WD WD 
N 
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Attribute Study or publication Period Annual Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 
Mean dry spell 
duration* Pilot study long 1889–2018 WD n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Mean dry spell 
duration* Pilot study short 1950–2018 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Maximum dry spell 
duration* Pilot study long 1889–2018 WD n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Maximum dry spell 
duration* Pilot study short 1950–2018 WD n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
intensity Pilot study long 1889–2018 WI n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
intensity Gallant et al. (2007) a,f 1910–2005 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
intensity Pilot study short 1950–2018 I n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
intensity Gallant et al. (2007) a,f  1950–2018 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
intensity Theobald et al. (2016) 1958–2012 WI n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
frequency Pilot study long 1889–2018 WI n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
frequency Gallant et al. (2007)a,f 1910–2005 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
frequency Pilot study short 1950–2018 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
frequency Gallant et al. (2007)a,f 1950–2005 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Extreme rainfall 
frequency Theobald et al. (2016) 1958–2012 N n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
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D = decrease; I =  increase; N = no significant trends; n/a = not applicable, since analyses for the attribute or season are not available from the source; WI = widespread increase 
(trends that are present at more than 25% of the sites) 

WD = widespread decrease (trends that are present at more than 25% of the sites). 
a Used a larger south-east Australia region for their analysis 
b Used gridded data; the comparison is based on approximately locating the pilot region from their figures 
c Analysed moderate rainfall events as events within 1 standard deviation of the mean 
d Analysed changes in the mean rainfall in the Snowy region 
e Analysed the number of heavy (1 to 2 standard deviations from mean) and very heavy (more than 2 standard deviations from mean) rainfall events 
f Defined extreme rainfall as the 95th percentile of rainfall 
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Having reviewed the statistical significance of trends, now consider the examination of the magnitude of 
trends for cases that are field significant in the pilot catchments and consistent with literature. The 
magnitude of trends is estimated site-wise using linear least squares regression at all 49 rainfall sites. 
The median absolute value of the trends and the median percentage of trends at the 49 sites are 
presented in Table 9. 

Table 9 Median magnitude of trends at 49 pilot sites  

Attribute Period Median 
trend – 
Annual 

Median 
trend – DJF 

Median 
trend – 
MAM 

Median 
trend – JJA 

Median 
trend – 

SON 

Total rainfall 
in mm/decade 
(%/decade) 

1889 to 2018 x 3.4 mm 
(2%) x –2.4 mm  

(–1%) X 

Total rainfall 
in mm/decade 
(%/decade) 

1950 to 2018 –16.8 mm  
(–2.1%) x –10.7 mm 

(–5.5%) 
–3.7 mm  
(–1.5%) 

–8.1 mm  
(–3.7%) 

Number of wet days 
in days/decade 
(%/decade) 

1889 to 2018 –0.6 mm  
(–0.6%) 

0.1 mm 
(0.7%) 

–0.2 mm 
 (–0.9%) 

–0.3 mm  
(–1%) 

–0.2 mm  
(–0.9%) 

Number of wet days 
in days/decade 
(%/decade) 

1950 to 2018 –1.9 mm  
(–1.8%) x –0.9 mm  

(–4.4%) 
–0.2 mm  
(–0.7%) 

–0.9 mm  
(–3.6%) 

Extreme rainfall 
intensity in 
mm/day/decade 
(%/decade) 

1889 to 2018 0.2 mm 
(0.5%) n/a n/a n/a n/a 

Extreme rainfall 
intensity in 
mm/day/decade 
(%/decade) 

1950 to 2018 0.3 mm 
(0.7%) n/a n/a n/a n/a 

n/a = not applicable; x = trends that are not field significant. 
Absolute trends per decade are presented first, followed by percentage change per decade in parentheses. 

The rainfall totals and the number of wet days in MAM and SON exhibit the largest trends, especially in 
the short-term analysis. The spatial pattern of the magnitude of the short-term trends in the number of 
wet days and total seasonal rainfall during MAM, JJA and SON are shown in Figures 8 and 9. The 
decreasing trends in the number of wet days are present at a number of sites across the study region 
during MAM and SON. The decreasing trends in seasonal totals are more widespread during SON. 
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Figure 8 Short-term (1950 to 2018) seasonal trends in number of wet days (in days/decade) 
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Figure 9 Short-term (1950 to 2018) seasonal trends in total rainfall (in mm/decade) 

5.3.2 Trends in evapotranspiration 

The trends in evapotranspiration (Mwet) are examined at the pilot sites over the full period of record 
(1889–2018) as well as a short-term period (1975–2018), consistent with the pan evaporation trends 
reported in literature. Table 10 shows the number of sites that exhibit significant trends in 
evapotranspiration during the 2 time periods of analysis. The long-term (1889–2018) analysis shows an 
increasing trend in annual total Mwet. At seasonal scale, the increase occurs during MAM, JJA and SON. 
The trend in JJA is widespread with 97% of the sites exhibiting an increasing trend. In the short-term 
(1975–2018) analysis, the annual and seasonal trends are not field significant. 
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Table 10 Number of sites that exhibit significant trends in annual and seasonal total 
evapotranspiration (Total Mwet in mm) 

Period Trend Annual DJF MAM JJA SON 

1889‒2018 Pos 8 (27%) * 2 (7%) 8 (27%) * 29 (97%) * 9 (30%) * 

1889‒2018 Neg 1 (3%) 3 (10%) 0 (0%) 0 (0%) 0 (0%) 

1889‒2018 None 21 (70%) 25 (83%) 22 (73%) 1 (3%) 21 (70%) 

1975‒2018 Pos 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (10%) 

1975‒2018 Neg 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

1975‒2018 None 30 (100%) 30 (100%) 30 (100%) 30 (100%) 27 (90%) 
Pos = significant positive trend; Neg = significant negative trend; None = no significant trends. 
* Asterisked, shaded cells indicate trends that are field significant (at 5%). 
The value in brackets indicates the number of sites as a percentage of the total number of sites (30 sites). 

Comparing the evapotranspiration (Mwet) trends from the pilot sites with reported trends in pan 
evaporation in Table 11. It is to be noted that pan evaporation records are different from the Morton 
wet evapotranspiration data from the pilot sites; however, this comparison is included here in the 
absence of trend studies in literature using estimated Morton wet evapotranspiration data. Literature 
reports decreasing trends in pan evaporation during the 1975–2002 period, possibly due to decreasing 
wind speeds or atmospheric demand (Roderick and Farquhar 2004). The trends are reported to be 
reversed or insignificant in south-east Australia when recent observations up to 2016 (Stephens et al. 
2018) and 2018 (Ukkola et al. 2019) are used for analyses. The insignificant trends in the short-term pilot 
analysis are consistent with the results of Ukkola et al. (2019). 

Table 11 Trends in total evaporation in the pilot sites and the changes reported in literature 

Study Period Annual 

Pilot study long 1889–2018 WI 

Pilot study short 1975–2018 N 

Roderick and Farquhar (2004) 1975–2002 WD 

Stephens et al. (2018) 1975–2016 I or N 

Ukkola et al. (2019) 1975–2018 N 
I = increase; N = no significant trends; ; WD = widespread decrease (trends that are present at more than 25% of the 
sites); WI = widespread increase (trends that are present at more than 25% of the sites). 
The literature uses pan evaporation records, which are different from the estimated Morton wet evaporation data used in 
the pilot study. 

5.3.3 Trends in temperature 

The trends in minimum and maximum temperatures from 3 ACORN–SAT v2 stations close to the pilot 
sites are presented here. The long-term (1913–2018) trends are calculated using available data from 2 of 
the stations; the short-term (1960–2018) trends are calculated using data from all 3 stations. Since the 
analysis uses only 3 sites, a field significance test of the results is not performed, and instead report 
trends at individual sites. 
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All the temperature sites show significant increasing trends. Tables 12 and 13 present the magnitude of 
significant trends in Tmax and Tmin at the site level and the magnitude of trends reported in literature 
in this region. The ACORN–SAT v2 sites near the pilot region show significant increasing trends in Tmax 
and Tmin, consistent with literature. The magnitudes of trends are also generally consistent. The short-
term (1960–2018) increasing trends in Tmax and Tmin are slightly higher at these stations compared to 
the regional trends reported by Ashcroft et al. (2012). 

Table 12 The magnitude of trends in Tmax at the ACORN–SAT v2 sites and the trends reported in 
literature (°C/decade) 

Study or publication Period Annual DJF MAM JJA SON 

Ashcroft et al. (2012) 1860–2011 0.04 0.03 n/a 0.08 n/a 

Jones (2012) 1910–2010 0.07 n/a n/a n/a n/a 

Ukkola et al. (2019) * 1910–2018 0.11 0.15 0.12 0.09 0.10 

Pilot study long, 
station 82039 1913–2018 0.15 0.10 0.22 0.11 0.12 

Pilot study long, 
station 72150 1913–2018 0.07 0.10 0.12 N N 

Ashcroft et al. (2012) 1960–2011 0.22 0.21 n/a 0.22 n/a 

Pilot study short, 
station 82039 1960–2018 0.35 0.31 0.31 0.26 0.45 

Pilot study short, 
station 72150 1960–2018 0.29 0.30 0.25 0.17 0.45 

Pilot study short, 
station 72161 1960–2018 0.37 0.40 0.26 0.33 0.52 

* Studied trends in mean temperatures as the average of Tmax and Tmin. 
N = no significant trends; I = increase; n/a = not applicable, i.e. analyses for the attribute or season are not available from 

source. 
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Table 13 The magnitude of trends in Tmin at the ACORN–SAT v2 sites and the trends reported in 
literature (°C/decade) 

Study/publication Period ANN DJF MAM JJA SON 

Ashcroft et al. (2012) 1860–2011 0.07 0.10 n/a 0.05 n/a 

Jones (2012) 1910–2010 0.11 n/a n/a n/a n/a 

Ukkola et al. (2019) * 1910–2018 0.11 0.15 0.12 0.09 0.10 

Pilot study long, 
station 82039 1913–2018 0.18 0.29 0.14 0.12 0.17 

Pilot study long, 
station 72150 1913–2018 0.25 0.26 0.29 0.19 0.20 

Ashcroft et al. (2012) 1960–2011 0.18 0.23 n/a 0.18 n/a 

Pilot study short, 
station 82039 1960–2018 0.22 0.40 - – 0.19 

 Pilot study short, 
station 72150 1960–2018 0.32 0.42 0.24 0.25 0.36 

Pilot study short, 
station 72161 1960–2018 0.21 0.30 0.13 0.10 0.32 

* Studied trends in mean temperatures as the average of Tmax and Tmin. 
–  dash indicates sites where trend is not reported due to missing data or questions regarding data quality 
n/a = not applicable, i.e. analyses for the attribute or season are not available from source. 

5.4 Results of split sample testing 
Four split sample simulations are performed using the historical data from the pilot sites to assess the 
ability of the stochastic model to capture the attributes of rainfall and evapotranspiration in recent 
observations, following the methodology outlined in Section 5.2.2. The split sample tests consist of the 
1990 reference and drought reference experiments. The mean attributes of the simulated data are 
compared with the mean attributes of observations during the calibration and validation time periods in 
the subsections below. 

5.4.1 Rainfall 

The trend analysis showed significant trends in cool season rainfall totals, annual/cool season number of 
wet days, and annual extreme rainfall intensity at the pilot sites. Here these attributes are examined in 
the simulated data with respect to the mean values in observations during the calibration and validation 
periods. The results of the experiments for some key attributes of rainfall are examined in this section. 
The figures showing the split sample results for other attributes are included in Appendix A for brevity. 

Figure 10 shows histograms of the differences in the mean MAM rainfall totals during the calibration 
and validation time periods from the MAM seasonal rainfall totals in the simulated time series. The 1990 
reference split sample tests are shown in Figure 10(a) and (b). When stochastic models are calibrated 
using observed data up to 1989, the simulated data show substantial differences (42–58 mm) when 
compared to the post-1990 validation period. When the Millennium Drought is included in the 
calibration period, the MAM rainfall during the validation period is closer to both the calibration period 
and the stochastically simulated data, as shown in Figure 10(c) and (d). For example, the simulations 
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exhibit biases of 42 mm (+24%) with respect to the validation period in one of the 1990 reference 
experiments; the biases reduce to 10 mm (+4%) when the drought is included in the calibration period. 
The histograms of total rainfall during JJA and SON are available in Appendix A. In each of these 
experiments, the seasonal rainfall totals during the calibration period are close to the simulated data, as 
expected. If the seasonal rainfall totals during the validation periods are different from that in the 
calibration period, the mean values during the validation period are different from the simulated data as 
well. The mean monthly rainfall is used for the calibration of the stochastic model, and the simulated 
time series closely replicate this statistic during the calibration period. 

 

 

(a) 1990-2018 reference split sample test using a long calibration period (1889–1989), (b) 1990-2018 reference split 
sample test using a short calibration period (1950-1989), (c) drought reference (2010-2018) split sample test using a long 
calibration period (1889–1989), and (d) drought reference (2010-2018) split sample test using a short calibration period 
(1950-1989). The dashed vertical lines mark the means of the respective histograms. The magnitudes of the means are 
shown in the plot legends. 

Figure 10 Histograms of the mean differences in total rainfall in MAM during the calibration and 
validation time periods from stochastic simulations (in mm) at 49 pilot sites  

The results of the split sample tests in the MAM seasonal rainfall totals are consistent with the 
significant decreasing trends detected from the analysis of trends at the pilot sites. The mean total 
rainfall figures during MAM, JJA and SON (Appendix A) are lower during the recent validation periods 
compared to the earlier calibration periods used for the simulations, consistent with the negative trends 
detected in these seasons. 
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While the inclusion of the drought in the calibration period reduces the biases in MAM total rainfall in 
the simulations, there are increases in biases in some other statistics. The histograms of the total rainfall 
during DJF are shown in Figure 11. The simulations underestimate the rainfall during DJF in the 1990 
reference experiments (–32mm, –16%). After the inclusion of data up to 2009 in the calibration, the 
biases increase (–72 mm, –29%). This change is generally consistent with the long-term positive trend in 
total DJF rainfall; however, the large positive difference during the recent validation period (+69–
71 mm) could be due to statistically insignificant changes in the most recent records. 

 

(a) 1990-2018 reference split sample test using a long calibration period (1889–1989), (b) 1990-2018 reference split 
sample test using a short calibration period (1950-1989), (c) drought reference (2010-2018) split sample test using a long 
calibration period (1889–1989), and (d) drought reference (2010-2018) split sample test using a short calibration period 
(1950-1989). The dashed vertical lines mark the means of the respective histograms. The magnitudes of the means are 
shown in the plot legends. 

Figure 11 Histograms of the mean differences in total rainfall in DJF during the calibration and 
validation time periods from stochastic simulations (in mm) at 49 pilot sites 

Figure 12 shows the histograms of the differences in the number of wet days during MAM during the 
calibration and validation periods from the stochastically generated data. When compared to the data 
during the calibration period, the stochastic simulations underestimate the number of wet days in all 
4 experiments. The number of wet days is not a statistic that is used in the calibration of the model, and 
the simulated time series show a slight bias in this statistic with respect to the calibration period data 
(1–1.4 days per season). 
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(a) 1990-2018 reference split sample test using a long calibration period (1889–1989), (b) 1990-2018 reference split 
sample test using a short calibration period (1950-1989), (c) drought reference (2010-2018) split sample test using a long 
calibration period, and (d) drought reference (2010-2018) split sample test using a short calibration period (1950-1989). 
The dashed vertical lines mark the means of the respective histograms. The magnitudes of the means are shown in the 
plot legends. 

Figure 12 Histograms of the mean differences in the number of wet days in MAM during the calibration 
and validation time periods from stochastic simulations (in days) at 49 pilot sites 

In the 1990 reference experiments, the mean number of wet days during the validation period is lower 
than that during the calibration period, consistent with the negative trends detected in this attribute 
(Table 8). The mean number of wet days during the validation period is lower than that in the 
simulations by 2.4–3 days per season. When the Millennium Drought is included in the calibration 
period, the number of wet days during the calibration and validation time periods are very similar. 
Hence in the drought reference split sample tests, the simulations underestimate the number of wet 
days with respect to both the calibration and validation period statistics. 

The histograms of the differences in the number of wet days during the other seasons (JJA, SON and 
DJF) are available in Appendix A. Like the results during MAM, the mean number of wet days from the 
stochastic simulations is biased lower compared to the calibration period (by 0.8 to 2.7 days per season) 
for all seasons and both periods of calibration. The differences of the mean statistics during the 
validation period vary. The mean number of wet days in JJA and SON is lower during the validation 
periods compared to the calibration periods, consistent with the trends detected in the pilot sites. In 
contrast, the number of wet days in DJF during the validation period is higher, especially during the 
2010–2018 validation period (+4.1 to +4.3 days per season). While the long-term trend in the number 
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of wet days in DJF are positive at the pilot sites, there are no significant short-term trends during this 
season; therefore, this positive signal in the number of wet days in DJF during the most recent validation 
period could be due to statistically insignificant trends in the recent record. 

The histograms of annual extreme rainfall intensity are available in Appendix A. The annual mean 
extreme rainfall intensity during the calibration period is close to that in the simulated data. During the 
validation period, the rainfall intensity is higher than the simulations, consistent with the positive trends 
at the pilot sites. 

To summarise: 

• The Millennium Drought is a high-leverage event; the statistics of the simulated rainfall can vary 
significantly depending on whether the drought is included in the calibration period or validation 
period. 

• The inclusion of the Millennium Drought improves some statistics during the validation period but 
leads to a deterioration in others: The simulations show biases with respect to the validation period 
data, and the sign and magnitude of biases vary with season and period. In the 1990 reference split 
sample test, both the validation period mean MAM rainfall and the MAM number of wet days are 
biased higher in the simulations. The statistics match better in the drought reference tests once the 
Millennium Drought is included in the calibration period. However, other statistics, such as the total 
rainfall during DJF and annual extreme rainfall intensity, show larger biases in the drought reference 
experiments. 

5.4.2 Evapotranspiration 

The mean annual total evapotranspiration from the stochastic simulations is compared with the mean 
annual evapotranspiration during the calibration and validation periods in Figure 13. The simulations 
match the annual evapotranspiration values during the calibration period in all the simulations. In the 
1990 reference split sample tests, the mean evapotranspiration during the validation period is higher 
than the simulated totals (and calibration period) by 18–20 mm. When the model is calibrated using 
data up to 2009, the annual totals from the simulations are closer to the annual totals during the 
validation period (mean difference: 8–11 mm). The split sample tests using shorter and longer 
calibration periods do not show any major influences on the differences between the simulations and 
the validation period. 
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(a) 1990-2018 reference split sample test using a long calibration period (1889–1989), (b) 1990-2018 reference split 
sample test using a short calibration period (1950-1989), (c) drought reference (2010-2018) split sample test using a long 
calibration period (1889–1989), and (d) drought reference (2010-2018) split sample test using a short calibration period 
(1950-1989). The dashed vertical lines mark the means of the respective histograms. The magnitudes of the means are 
shown in the plot legends. 

Figure 13 Histograms of the mean differences in total annual evapotranspiration during the calibration 
and validation time periods from stochastic simulations (in mm) at 30 pilot sites  
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6 Summary of key findings from 
assessment of non-stationarity 
Based on an analysis of multiple lines of evidence, comprising a review of available literature and the 
assessment of pilot sites in the Ovens, Upper Murray and Snowy catchments using both Mann Kendall 
and split sample tests, there is evidence of non-stationarity in the record for rainfall and temperature. 
The non-stationarity in evapotranspiration is not as well established, likely in part due to the different 
processes driving the different ‘types’ of evapotranspiration (for example, pan versus Morton). Specific 
findings varied depending on the dataset used (for example, gridded versus point; whether the data had 
been homogenised or not; the spatial domain of the data; the temporal period of analysis), but the 
broad conclusions are: 

• Temperature records are non-stationary – Literature documents temperature increases in this 
region, especially post-1960 (Jones 2012; CSIRO and BOM 2015). The Climate Change in Australia 
initiative reports an increase of 0.8 °C in the Murray basin cluster (which contains the pilot 
catchments) over 1910–2013 assuming a linear trend, with higher trends for temperature minimums 
than for maximums; this is broadly consistent with a mean temperature increase over Australia by 
just over 1 °C during the slightly longer period 1910–2018. Climate projections indicate that 
increases of 0.6–1.3 °C are expected in the Murray basin cluster in the near term (2020–2039) with 
respect to a baseline of 1986–2005. The homogenised temperature sites near the pilot region 
analysed here also show statistically significant increases. The increases amount to 0.8–1.5 °C in 
maximum temperatures and 1.9–2.6 °C in minimum temperatures during the period 1913–2018. 

• Cool season and annual rainfall totals are non-stationary – Literature documents declines in cool 
season (April to October) rainfall by 10–20% in south-east Australia since the mid-1990s, 
predominantly in autumn and early winter. The trend assessment using data from the pilot sites is in 
agreement with literature and shows short-term decreases in autumn, winter and spring rainfall 
totals. The short-term (1950–2018) trends are strongest in autumn – the median decline in autumn 
rainfall at the pilot sites amounts to 5.5%/decade for the period 1950–2018; the median declines in 
annual total rainfall at the pilot sites amount to 2.1%/decade for the same period. 

• There are trends in multiple attributes of rainfall – Literature reports decreasing trends in the 
number of wet days during the cool season; the signal also exists in the data from the pilot sites. In 
addition, the pilot sites show a short-term decline in spring (SON) rainfall. This result is not 
consistent with other large-scale studies in this region but is consistent with regional studies in 
nearby catchments. There is an increasing trend in annual extreme rainfall intensity at the pilot sites. 
There is less consensus in literature on extreme rainfall intensity; however, the trend in the pilot sites 
is consistent with the reported trend in a nearby catchment. 

• Non-stationarity in the evapotranspiration is not as well established – Literature documents 
negative trends in pan evaporation over the period 1975–2002, whereas studies using more recent 
data report insignificant/increasing trends. There are long-term increases in annual Morton wet 
evapotranspiration at the pilot sites; the short-term trends are not statistically significant. The pilot 
study results are not directly comparable with available literature based on pan evaporation data, 
and so some uncertainty remains regarding the non-stationarity of evapotranspiration data. 

• Multiple climate drivers influence the rainfall in south-east Australia – Literature documents 
that the declining cool season rainfall is associated with an expansion of the tropics, increasing 
intensity of the subtropical ridge over the continent and positive trends in the SAM. Literature 
indicates that these changes in large-scale patterns during the cool season are at least partly 
attributable to climate change (CSIRO 2012; Hope et al. 2017). Other climate drivers, notably ENSO 
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and IOD, influence the interannual variability regional rainfall, primarily affecting rainfall in winter 
and during the warm season (CSIRO and BOM 2015; Hope et al. 2017). 

• The period used for calibration influences the statistics of the simulated stochastic data – The 
split sample tests show that the Millennium Drought is a ‘high-leverage’ event, in the sense that 
statistics of the simulated rainfall can vary significantly depending on whether the drought is 
included in the calibration period or validation period. When the drought is included in the 
calibration period, the match between the simulations and observed data post-drought is 
dependent upon the statistic and season under consideration. The inclusion of the drought in the 
calibration period brings the autumn rainfall and number of wet days in the simulated data close to 
recent (2010–2018) observations, but results in larger deviations in simulated summer rainfall, 
number of wet days in summer and extreme rainfall intensity. For example, when the drought is 
excluded from calibration, the simulations show mean biases in the MAM rainfall during the 
validation period of +42 mm (+24%). When the drought is included in calibration the bias reduces; 
the simulations show biases in total MAM rainfall during the validation period of ‒10 mm (‒4%); 
however, in the same tests, the bias in DJF rainfall increases from a mean of ‒32 mm (‒16%) to ‒
71 mm (‒29%) with the inclusion of the drought in the calibration period. 

Although the pilot analysis does not seek to attribute trends to a specific driver (whether it be natural 
climate variability, anthropogenic climate change or other potential drivers of change), several studies 
have attributed the temperature shifts/trends and cool season rainfall trends to anthropogenic 
influences (CSIRO 2012; Jones 2012; CSIRO and BOM 2015, Hope et al. 2017). The SEACI synthesis 
report states that ‘the decline in rainfall across south-eastern Australia was at least partly attributable to 
climate change’ (CSIRO 2012, p. 4). The Climate Change in Australia report notes that the literature on 
rainfall attribution in southern Australia is based on ‘implied attribution’, using inferred causality from 
the attribution of large-scale drivers. The report states that more formal attribution to definitive causes 
is yet to be established due to a range of uncertainties, but at the same time notes that the ‘drying 
across southern Australia cannot be explained by natural variability alone’ (CSIRO and BOM 2015, p. 45). 

Future regional projections indicate a warmer and drier climate with respect to a baseline of 1986–2005. 
In the Ovens and Murray catchments, VCP19 projections (Clarke et al. 2019b) report annual rainfall 
decreases during the 2020–2039 period. The projected median change is –6% (range of ‒12% to ‒4%) 
under the medium emissions scenario, and ‒11% (range of ‒18% to ‒3%) under the high emissions 
scenario, with further declines anticipated in subsequent decades. Climate projections for Murray basin 
cluster indicate increases in potential evapotranspiration in all seasons; VCP19 projects 8–10% increases 
in pan evaporation by the 2030s (i.e. 2020–2039 time-slice centred on 2030). The projected changes for 
the Murray basin cluster are based on Morton’s wet potential evapotranspiration, whereas the pan 
evaporation projections from VCP19 is based on pan evaporation modelled directly by the climate 
model. 
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7 Options for stochastic time series 
generation in the southern basin 
Due to reported trends in the historical record for the southern basin, which is at least partly 
attributable to anthropogenic influences, there is a need to consider the implications of non-stationarity 
on the methodology used for the stochastic risk assessment. The working definition of non-stationarity 
used here is that the parameters of the stochastic model (and thus the statistics associated with the 
stochastically generated data) vary with time. This time variation means that stochastic results need to 
be reported relative to a specific period. The following terminology is used in this report. 

• Historical record. This is used synonymously with the instrumental record (although noting that 
paleoclimatic records of the IPO are used to inform the stochastic sequences in previous studies). 
For the purposes of this report, the historical record is usually interpreted to mean the period 1890–
2018, as this is the period of infilled data available from the SILO database. 

• Baseline period. The term baseline is usually reported relative to a climatological baseline. The 
specific baseline period will depend on the climate models used and various other factors. The 
World Meteorological Organization (WMO) suggests defining climate baselines of at least 30 years 
in duration (WMO 1989). Further studies document that a baseline of 40 years is required for 
hydrological investigations in south-east Australia to capture the significant year-to-year variability 
associated with key processes (Potter et al. 2016). 

• Current climate. This is interpreted here to mean the risk at the current time (for example, the year 
2023, which is the date this report was written) or for a window centered on the current time. 

• Future climate. This can refer to any future period for which projections are available and is usually 
reported as a static estimate using some window, typically 20–30 years. Consistent with WMO 
applications, hydrological applications usually benefit from longer windows to increase the signal-
to-noise ratio; however, there may be significant changes over this period (that is, the projected 
data within a 30-year window may not be stationary). It is noted that near-term climate projections 
have started encompassing the current climate; for example, VCP19 uses a future window of 2020–
2039 and thus encompasses the current year. 

An example can help understanding of these terms: the temperature in Victoria is reported to have 
increased 0.5 °C over the historical record from 1910 to 1995, and the current (2018) temperature is 
about 0.6 °C warmer than the 1986 to 2005 baseline (Clarke et al. 2019a). Future temperature 
projections suggest increases of between 0.5 °C and 1.3 °C for the period 2020 to 2039, relative to the 
same baseline. 

The stochastic method used for the northern basins is based on the historical record and simulated to 
be conditional to the IPO, with the implicit assumption that the climate is stationary over this period. 
These simulations are intended to capture variability in the baseline historical record, which was 
composed of (SILO infilled) climatic measurements from the period 1890–2018 as well as IPO 
distribution dwell times informed by paleoclimatic records. The Department of Planning and 
Environment developed additional methodology to amalgamate the variability from the stochastic 
replicates with climatic signals informed by regional climate models (RCMs). This method applies 
NARCliM-based scaling factors to the stochastic model outputs. 

Trade-offs are associated with modifying this methodology to incorporate climate non-stationarity, 
balancing the complexity of the climate signal, the strength of various non-stationarity elements as 
compared to the underlying variability, and the variety of methods that may be available to explicitly 
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accommodate known trends. Here a range of options available to account for the presence of non-
stationarity in stochastic time series generation are outlined. The options vary in complexity. 

7.1 Use the entire historical record to calibrate the 
stochastic model 
Using the entire historical record to calibrate the stochastic model the simplest option, forming a naive 
default. The advantage of this option is that it makes full use of the available historical data (1889–
2018), which improves the statistical precision of parameters used in the stochastic model. The 
disadvantage is that significant long-term shifts in the historical record (as opposed to ‘natural’ 
variability including interdecadal variations associated with the IPO) may lead to generated sequences 
that are not representative of current climate. 

Moreover, assessments of future risk based on climate model results are invariably derived with respect 
to a historical baseline, and the extent to which the full (1889–2018) historical record is reflective of any 
given climatological baseline used for climate projections is unclear and is likely to depend on the 
specific climate variable, as well as the statistics for those variables (given the different findings from 
including/excluding the Millennium Drought depending on whether one was looking at MAM seasonal 
total, MAM number of wet days, JJA seasonal total or extreme rainfall intensity). 

7.2 Use a climatological baseline to calibrate the stochastic 
model 
This option involves using a shorter climatological baseline for calibration of the model, which can then 
be scaled using climate model outputs to derive both current and future estimates of variability. The 
baseline could be chosen to be consistent with the NARCliM scaling factors that are used for future 
projections by the department. The benefit of this approach is that it maintains basic consistency with 
NARCliM by having an identical baseline. The NARCliM 1.0 baseline is 1990–2009, and the NARCliM 1.5 
baseline is 1950–2005. The method is thus suitable for NARCliM scaling-based current and future 
climate applications. 

The trade-off is that the initial years of data (say, prior to 1950 or 1990 depending on the version of  
NARCliM) are no longer utilised and there is a corresponding loss of precision in the parameters used as 
the basis of the stochastic model. The significant interannual and interdecadal variability in particular 
means that depending on whether one includes (say) the Millennium Drought as part of the baseline 
will make a significant difference on the simulated results. 

It is noted that this baseline will reflect neither current nor future climate, and thus climate model 
outputs will be required to adjust the stochastic sequences to reflect these periods. This requires 
decisions on the climatological baselines and, if the NARCliM outputs are to be used, the specific 
version of NARCliM to be used for analysis. In particular, the NARCliM 1.0 baseline of 20 years is, for the 
reasons described above, too short to capture the historical climate.  

As already discussed, the WMO recommends a minimum baseline length of 30 years (WMO 1989). 
Guidelines developed under VicCI recommend a baseline of at least 40 years, given the high interannual 
variability in rainfall and runoff in this region (Potter et al. 2016). Another disadvantage of the method is 
that the use of simple scaling to represent future climate would not reflect changes in statistics such as 
the number of wet days or extremes. 
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Scaling of the baseline climate using climate models may present significant challenges. Multiplying 
rainfall by seasonal change factors will mean that the number of wet days will stay constant and the 
extremes will change in the same manner as seasonal rainfall totals, which is inconsistent with the 
findings of the non-stationarity analysis presented above. It may be that these other statistics are of 
‘second order’ importance compared to seasonal and annual totals, depending on the hydrological 
application (for example, long-term catchment yield assessments), but this would need to be tested. 
Alternatively, more complex scaling options, such as a quantile-based approach, could be used to jointly 
change the seasonal totals, wet days and extremes in a manner that reflects the climate projections. 

Several further variants could be considered that involve using a hybrid baseline, but they present 
additional challenges that are likely to overcomplicate the methodology. The variants are detailed in 
Section 7.3. 

7.3 Use a hybrid baseline of the historical climate to 
calibrate the stochastic model 
Another option is to utilise a hybrid baseline period. For example, some statistics may have negligible or 
no shift between a baseline and a longer historical period. Therefore, additional precision would be 
achieved by calibrating selected statistics to a longer record, while reserving only some key statistics 
(such as the mean value) to the baseline period. The challenge with this approach is that the term 
baseline is no longer informative, since it is not clear what period is being represented in the calibration. 

Another option is to scale the historical record up to the values observed in the baseline period. This is 
one of the approaches to address non-stationarity recommended by the expert review panel. The 
benefit of this approach is that it provides a mechanism for utilising the entire record. A challenge with 
this approach is that it requires the scaling of the prior historical record to be representative. This 
procedure is unlikely to be straightforward, because: 

• Multiple statistics are changing in different ways, so scaling by seasonal or annual totals may not 
lead to appropriate adjustments of the other statistics. In particular, the pilot study identified 
negative trends in cool season totals, negative trends in number of wet days and positive trends in 
extreme intensity, which would require care in how the historical observations are mapped. 

• Historical non-stationarity is likely to encompass a combination of natural climate variability and 
anthropogenic climate change, so one would need to assess the magnitude of historical change 
specifically associated with anthropogenic climate change to scale the historical values appropriately. 
If this is not done, then aspects of the signal associated with natural variability may also 
inadvertently be removed (at least in part), which is unlikely to be desirable. 

7.4 Use the inverse method to generate a current or future 
climate 
This approach could be used to target statistic values representative of a particular period, such as the 
current or future climate. Unlike traditional stochastic generation methods in which the stochastic 
generator parameters are estimated to achieve the best performance over a calibration dataset, the 
‘inverse’ method defines a set of ‘target’ statistics (for example, total annual rainfall, seasonal rainfall, 
number of wet days, intermittency, extremes) and then calibrates the stochastic generator against those 
statistics. The advantage of this method is that it can target the most recent values corresponding to 
current climate, whereas other methods (described in Section 7.2) would use a baseline of historical 
climate spanning the selected years, which may not reflect current climate. 
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The key challenge of this method is defining the target statistics reflecting current or future climate. This 
is not a trivial exercise and may require examining historical climate trends in combination with climate 
modelling evidence. Moreover, this approach has not yet been implemented in large-scale real-world 
analyses, and thus would require a period of method testing prior to widespread implementation. 

7.5 Use weather typing to capture specific mechanisms of 
generation of precipitation 
This method involves stratifying the historical record by synoptic types (such as ECLs) to provide a 
scaling method that can explicitly account for mechanisms with strong expected change. The 
methodology would involve additional complication introduced by the multiple weather types. It may 
also double count the effects of scaling when deployed alongside methods that are needed to scale 
other components. For example, if ECLs were introduced as a scaling category with their own 
relationships to future climate, other scaling relationships (for example, shift in seasonality, shift in 
extremes) would need to be developed for the specific case of non-ECL weather events. This method is 
likely to be highly prospective, given the potential of double counting the effects of synoptic 
meteorology if they are also explicitly included in climate model projections. 

The trade-offs involved in the 5 options detailed in Sections 7.1–7.5 are summarised in Table 14. The 
discussion of method advantages and disadvantages is predicated on the assumption that the historical 
record is non-stationary and that at least part of the non-stationarity is attributable to anthropogenic 
climate change. 
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Table 14 Summary of options for stochastic time series generation in the southern basin, with 
advantages/disadvantages described in the context of a non-stationarity climate signal 

Option Advantages Disadvantages Application 

1. Entire 
record 

Long record, historical 
enables increased 
precision of parameter 
estimation. 

Reflective of neither the current 
climate nor a climatological baseline 

Reflection of 
long-term 
historical climate 

2. Historical 
baseline 

Matches NARCliM 
baseline and thus can 
be used as the basis for 
current and future 
climate assessments. 

Need to choose which NARCliM 
baseline, noting that NARCliM 1.0 is 
too short relative to WMO and VicCI 
recommendations. 
Not reflective of current climate and 
thus requires some level of 
subsequent processing. 
Simple seasonal scaling would not 
reflect changes in wet days and other 
statistics, although there may be 
alternative (e.g. quantile-based) 
methods that could address this issue. 

NARCliM-derived 
current and 
future climate 
applications 

3. Hybrid 
historical 
baseline 

Uses full historical 
record. 
Possible extra precision 
in some attributes 
compared to baseline 
only. 

Advantage of extra data before 
baseline is unclear. 
There are multiple complicating 
factors associated with 
implementation of this method, 
including complex variations with key 
attributes, and the need to separate 
the natural and anthropogenic 
components of any historical trends 
prior to adjustments. 

Adjustments 
would enable 
stochastic data 
to reflect current 
climate 

4. Inverse 
method 

Can be implemented to 
match current and 
future climate. 
Allows changes in all 
key attributes. 

Difficulties 
Method development and testing 
required. 

Could be 
designed to 
reflect current 
and future 
climate 

5. Weather 
typing 

Allows for specific 
mechanisms (ECLs). 

Additional complication introduced by 
multiple types. 
Scaling is complicated by types, and 
there exists a significant possibility of 
double counting . 

Specific 
allowance for 
future changes 
to weather types 
rather than 
simple scaling 

 

Another point raised by the independent review panel is the role of multiple climate drivers in the 
southern region. Evidence in literature indicates a strong trend in the SAM during the cool season, while 
the warm season is influenced by ENSO and IOD. Note that the previous stochastic generation 
methodology based on climatic relationship to the IPO relied on partitioning the climate under the 
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assumption of stationarity in the IPO. This is conceptually different from assuming a trend signal in the 
relevant climate drivers, since it does not require projection of the trend associated with the climate 
driver. Also, in locations where the partition between IPO positive and negative shows negligible 
difference, the partition collapses back to the underlying marginal model (that is, the model does not 
become ‘worse’ by inclusion of the IPO in areas where the IPO is not important). 

Although there is the potential to develop a non-stationary stochastic model that directly conditions on 
trend properties (such as SAM), this is inadvisable. Apart from the many technical methodological 
challenges of developing the non-stationary model and conditioning it on an RCM, any application of 
RCM-derived scaling factors of meteorological variables (such as temperature, rainfall and 
evapotranspiration) would then need to exclude the role of that driver as part of the analysis to avoid 
double counting this effect (given that the intent of the stochastic conditioning is to have the influence 
of the relevant driver already included in the analysis). Therefore, this is not presented as a viable 
option. 

7.6 Recommendation for stochastic generation 
Among the options for stochastic generation, methods that apply a ‘standard’ calibration to a selected 
baseline are preferable given the degree of expertise and modelling required for options such as 
synoptic typing and the inverse method.  

The selection of the calibration period is important in that it should be as long as possible while also 
providing consistency with the method of assessment of climate projections.  The NARCliM 1.5 baseline 
is 1950–2005, which has a suitable minimum baseline length for hydrological studies, given typical 
recommendations of 30 years (WMO 1989) or 40 years (Potter et al. 2016). Restricting calibration of the 
stochastic model to the period 1950-2005 implies a loss of precision in parameter estimates, but the 
need for compatibility with climate model scaling is greater.  

The complexity of change in climate attributes gives rise to the possibility that scaling by the application 
of change factors to seasonal or annual totals may not lead to appropriate adjustments of the other 
statistics, for example, a negative trend in the number of wet days. For this reason, quantile scaling 
methods should be applied in preference to simple scaling.  

The scaling approach should be applied to different RCMs rather than an ensemble mean given the 
likely variation between models. Due to the nonlinear nature of hydrological transformation, this 
approach will ensure that model uncertainty in hydrological estimates is suitably accounted for.  
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Appendix A – Supplementary material 

 

Blue trendlines indicate the presence of significant trends (at 5% level) using the Mann Kendall trend test. The data from 
1960 to 1964 is missing in the ACORN–SAT v2 data. 

Figure A.1 Annual mean short-term (post-1960) Tmax and Tmin at site 82039 (Rutherglen Research) 
from raw station data and homogenised ACORN–SAT v2 data with linear trendlines 
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.2 Histograms of the mean differences in total rainfall in JJA during the calibration and 
validation time periods from stochastic simulations (in mm) at 49 pilot sites  
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.3 Histograms of the mean differences in total rainfall in SON during the calibration and 
validation time periods from stochastic simulations (in mm) at 49 pilot sites  
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.4 Histograms of the mean differences in number of wet days in JJA during the calibration and 
validation time periods from stochastic simulations (in days) at 49 pilot sites  
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.5 Histograms of the mean differences in number of wet days in SON during the calibration and 
validation time periods from stochastic simulations (in days) at 49 pilot sites 
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.6 Histograms of the mean differences in number of wet days in DJF during the calibration and 
validation time periods from stochastic simulations (in days) at 49 pilot sites 
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(a) 1990 reference split sample test using a long calibration period, (b) 1990 reference split sample test using a short 
calibration period, (c) drought reference split sample test using a long calibration period, and (d) drought reference split 
sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

Figure A.7 Histograms of the mean differences in annual extreme rainfall intensity during the calibration 
and validation time periods from stochastic simulations (in mm/day) at 49 pilot sites  
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