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Executive summary 
The production of long stochastic time series of climate variables such as rainfall and 
evapotranspiration is often used to supplement the historical climate record when conducting 
drought risk assessments. While historical data provides one realised set of climatic conditions, 
stochastic models enable the generation of extended synthetic climatic conditions which are just as 
plausible as those occurring in the past. 

To this end, 10,000 years of jointly simulated stochastic data have been generated for 100 rainfall 
sites and 45 evaporation sites in the Macquarie River catchment, with 7 different model variants 
developed to simulate the stochastic sequences, each with different assumptions regarding the role 
of natural climate variability and anthropogenic climate change. The ‘historical’ climate runs comprise 
Model A, which is the base model without climate partitioning; Model B, which accounts for shifts 
based on the instrumental record of the Interdecadal Pacific Oscillation (IPO); and Model C, which 
includes paleoclimate information to improve the estimation of the dwell time in each IPO phase. 
Although all 3 model variants reflect the historical climate, Model C is identified as the best 
representation of historical observations. 

The performance of Model C is evaluated in detail relative to historical rainfall and evaporation over 
the period from 1890 to 2018. A high-level summary is provided in Table 1 for rainfall sites and 
Table 2 for evaporation sites. The labels ‘Overall Good’, ‘Overall Fair’ and ‘Overall Poor’ are detailed in 
Section 2.5 and arise from the consistent application of a defined set of tests to all sites and to a set 
of 20 relevant variables. Of the statistics presented here, 12 are identified as Overall Good, 7 are 
identified as Overall Fair and 1 is identified as Overall Poor. An intermediate level summary can be 
found in the Section 3.1, and plots for each site can be found in the annex documentation 
corresponding to each statistic. 



 

9 

Table 1 Rainfall evaluation summary of performance, Paleoclimatic IPO model variant; 
117 sites, 129 years length, 77 replicates 

Statistic Overall evaluation of model performance 

Distribution of annual total rainfall Good 

Distribution of 2-year rainfall totals Good 

Distribution of 5-year rainfall totals Good 

Distribution of 10-year rainfall totals Good 

Mean of monthly rainfall totals Good 

Standard deviation monthly rain totals Fair 

Distribution of annual proportion of wet days Poor 

Mean of monthly proportion of wet days Good 

Standard deviation monthly proportion of wet days Fair 

Annual 1-day rainfall maximum distribution  Good 

Annual 2-day rainfall maximum distribution Fair 

Annual 3-day rainfall maximum distribution Fair 
Traffic light criterion specified by systematic evaluation method (Section 2.5). 

Table 2 Evaporation evaluation summary of performance, Paleoclimatic IPO model variant; 
79 sites, 129 years length, 77 replicates 

Statistic Overall evaluation of model 
performance 

Distribution of annual total evaporation Good 

Distribution of 2-year evaporation totals Good 

Distribution of 5-year evaporation totals Good 

Distribution of 10-year evaporation totals Good 

Mean of monthly evaporation totals Good 

Standard deviation monthly evaporation totals Good 
Traffic light criterion specified by systematic evaluation method (Section 2.5). 

The outcomes of the stochastic modelling, and anticipated implications for water security 
assessments, can be summarised as follows: 

• Multiyear annual totals rainfall/evaporation – the model reproduces these statistics well, 
which is critical for application to drought assessment. 

• Monthly totals rainfall/evaporation – the means of the monthly totals are considered Good, 
and the standard deviations are considered Fair. Discrepancies in simulated data are discussed in 
the report and show for a representative rainfall site that the Fair classification of the standard 
deviation of monthly totals is due to occasional simulated wet months that inflate the standard 
deviation. For evaporation, some months may have a standard deviation which is 2 mm lower 
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than observed. For a reported example at one site, the observations range from 85 mm to 
115 mm (90% confidence interval) while the simulations range from 88 mm to 112 mm. 

• Proportion of wet days – this statistic is classified as Overall Poor in the annual distribution, but 
Overall Good for mean of monthly proportions and Overall Fair for the standard deviations of 
monthly proportions. Interpreting this performance, the proportion of wet days is unbiased, but 
has insufficient variability at the annual scale. For the driest year on record from a representative 
site, this translates to an extra 10 wet days in the median simulation compared to the 
observation. However, the process of rainfall amounts compensates for this lack of variability (by 
simulating less rainfall per wet day in these situations) so that rainfall totals are unbiased and 
there is good reproduction of the variability of annual totals. 

• Annual maximums – the annual maximums are Overall Good for 1-day maximums and Overall 
Fair for 2-day or 3-day maximums. Where there is Fair performance, it is shown that the 
observed values are not far outside the border of the 90% confidence interval of simulated 
extremes. The performance of these statistics is mostly relevant to flood studies, for catchments 
that have a response time in the order of several days. 

Compared to single-site rainfall models, the class of models that are able preserve multisite statistics 
from daily to interannual scales across both rainfall and evaporation variables is not large. Based on 
the performance summary, the model outlined in this report was able to account for key attributes of 
the multisite rainfall and evaporation observations for the historical record. 

The generated daily time series of 10,000 years length are recommended for use in hydrological 
modelling studies of the Macquarie River catchment. Model C is recommended for use as the best 
representation of the historical climate, because it includes information on the IPO from 
paleoclimate records. 
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1 Introduction 
Water in the Macquarie Valley serves many purposes, including irrigation, watering stock, domestic 
use, town supply, ecological and recreational demands. The valley supports a diversity of agricultural 
activity, including a wide variety of crops: cotton, cereals, wine grapes, oil seed, legumes and tree 
crops such as olives, nuts and cherries. However, flows in the Macquarie River are highly variable, and 
show evidence of prolonged periods of below-average flow. For example, during the Federation 
drought, storages fell to 4% of full supply volume, causing suspension of the water sharing plan and 
significant water restrictions in townships such as Dubbo. 

The New South Wales Department of Planning and Environment has developed a risk-based method 
to assess impacts of water scarcity on the regional economy and ecosystem assets of the Macquarie 
Valley. The method is based on hydrological and economic modelling, in which the Integrated 
Quantity and Quality Model (IQQM) water resources model will is used to generate daily water 
balance simulations over a long climatic period. 

To facilitate daily water balance modelling, stochastic inputs are required to account for variability 
and potential projected future changes to rainfall and evaporation at many sites. To simulate key 
hydrological features of interest, the stochastic inputs must reproduce variability and gradients in the 
rainfall and evaporation across all sites within the region, and on multiple timescales – daily, monthly, 
annual and multiannual. 

1.1 Project scope 
The project scope is to deliver stochastically generated rainfall and evaporation at multiple sites 
within the Macquarie Valley and surrounding region. The list of sites is provided in Appendix A and 
comprises 117 rainfall sites and 79 evaporation sites. There are 196 time series to be generated, but 
only 117 unique locations because the 79 evaporation sites are also rainfall sites. A 129-year 
common period (1890–2018) is used to calibrate and evaluate the rainfall/evaporation model. 

A single replicate of length 10,000 years is required for several climatic cases (Table 2). In each case 
the climate model uses long-term stationary assumptions. 

• Model A is calibrated against daily and seasonal variability from the observed record but does 
not account for interannual sources of variability that are available from climate indices. 

• Model B uses separate parameters calibrated against the positive and negative phases of the 
Interdecadal Pacific Oscillation (IPO) to account for interannual variability, using IPO data from 
the instrumental record (that is, from 1890–2018). 

• Model C uses paleoclimate information about the IPO to inform the distribution of possible dwell 
times in each phase of the IPO. Model C uses the most complete available information on long-
term climate variability by blending both historical and paleoclimate information, so is intended 
as the primary characterisation of historical variability, whereas Models A and B are mostly 
intended for comparisons. 

The generated time series for Models A–C are intended to characterise statistical features of the 
historical rainfall, including interannual and multidecadal variability, with a view to replicating the 
climatic drivers of drought. The output is generated as a single time series (for example, 10,000 
years), which provides maximum flexibility – it can be used as a single extended time series or broken 
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up into shorter replicates to suit modelling requirements (for example, 100 × 100-year replicates 
instead of a single 10,000-year replicate). To statistically evaluate the performance of the model, the 
10,000-year simulations are partitioned into 77 replicates of 129 years each to match the length of 
the historical record; this allows direct comparison of statistical quantities. The evaluated statistics 
include the proportion of wet days, means and standard deviations of monthly and annual totals 
of rainfall, variability in multiannual totals (2-, 5- and 10-year totals) and an analysis of 1-day, 
2-day and 3-day annual maximums. 

Table 3 Cases of simulated data outputs; Model C is intended as the primary output for 
evaluation of historical climate conditions 

Model Case description 

A Base case: no climate partitioning 

B Instrumental IPO: conditioned on the Interdecadal Pacific Oscillation, instrumental record only 

C Paleo IPO: conditioned on the IPO using paleo proxies to inform climate states 

1.2 Background 
The Macquarie River in central western New South Wales forms part of the Murray–Darling basin. 
The catchment headwaters are in the Great Dividing Range east of Bathurst with catchment peaks 
approaching 1,400 mAHD and an annual average rainfall greater than 1,200 mm. The river flows 
northwest for 960 km towards the Barwon River near Brewarrina, with an elevation of about 
100 mAHD. Rainfall over most of the lower catchment averages 300–500 mm/year, with summer 
months the wettest. Annual average evaporation ranges from 1,100 mm to 1,800 mm across the 
catchment. 

The Macquarie River has highly variable flows; for example, at Dubbo the annual flows have 
historically ranged from 24.1 ML to 10,113 GL (NSW Department of Primary Industries, 2016), with 
annual average flow 1,175 GL. The low flows typically occur during extended (that is, multiyear) 
drought periods (for example, 1935–42, 2001–2009). Because of decreasing channel capacity, 
irrigation and the presence of numerous effluent channels, annual average flow reduces downstream 
of Dubbo, and is less than 330 GL above the Macquarie marshes and less than 150 GL below the 
marshes (NSW Department of Primary Industries, 2016). The catchment is hydrologically complex, 
with numerous anabranches in the lower reaches and surface water/groundwater interactions in the 
upper Macquarie (NSW Department of Industry, 2018). 

There are 2 significant dams in the headwaters, Windamere Dam (368 GL, on the Cudgegong River, 
built in 1984) and Burrendong Dam (1,678 GL, on the Macquarie River, built in 1967). The dams 
provide water for irrigators, stock, domestic use and town supply as well as flood storage capacity. 
The catchment population is less than 200,000 people, concentrated in the town centres of Bathurst, 
Dubbo, Mudgee, Orange and Wellington. The towns have higher priority access to water than do 
irrigators. Over 80% of the land is used for agriculture – mainly sheep and cattle grazing as well as a 
range of broadacre and orchard/higher value horticulture (for example, cotton, cereals, wine grapes, 
oil seed and legumes, and tree crops such as olives, nuts and cherries). The river also supports an 
array of recreational activities including fishing, water sports, bushwalking and camping. 

The quantity and quality of water are equally significant for the biodiversity of the Macquarie River 
ecosystem. The Macquarie marshes are listed under the Ramsar convention and are one of the 
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largest inland semi-permanent wetlands in the Murray-Darling Basin. The marshes include a diverse 
range of habitat and vegetation types, hosting numerous endangered and threatened species of 
native birds and fish. There are numerous additional ecosystem assets including lakes, billabongs, 
wetlands and flood-dependent forests. 

Given the high degree of variability in the climatic system there are significant challenges in 
managing the provision of water for irrigation and ecosystem functions. Future climate change poses 
additional risks to the region, and though uncertain, it is expected that surface water availability is 
more likely to decrease than increase across the basin (van Dijk et al., 2016). In particular, there are 
significant consequences if future droughts occur with similar or greater magnitude than historical 
droughts. If the water security reaches critically low levels there is the potential for high water 
restrictions, loss of ecosystem assets, biodiversity stress, no water allocated for agricultural activity, 
reduced mining activity and significant indirect impacts on local townships and the regional 
economy. 

An IQQM water balance model was developed to inform the Water Sharing Plan for the Water 
Sharing Plan for the Macquarie and Cudgegong, and for diversion compliance purposes. The 
Macquarie IQQM model takes into account contemporary infrastructure, water access entitlements 
and water sharing rules. The Macquarie IQQM model will underpin risk-based assessment, with 
critical outputs including estimates of water availability and allocation for various scenarios of 
economic and environmental impact. This project exists to provide stochastic data of climatic 
forcings as a necessary input for water balance modelling. 
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2 Methodology 

2.1 Observation data 

2.1.1 Rainfall data 

Figure 1 shows the locations of rainfall data, which were provided at 100 locations (see Appendix A 
for complete list). The data were originally sourced from the SILO patch point database, so there 
were no missing values. All sites had considerable length of data prior to infilling methods from SILO. 
The start dates are either 1 January 1889 or 1 January 1890 and the end date is 11 September 2018. 
All available data from 1890 onwards was used for calibration. For evaluation, the last portion of 
2018 was padded with data from 2017 to give an indicative total for 2018 rather than to discard 
9 months of data within the evaluation. This means all evaluation replicates 129 years long. 

 

See Appendix A for site details. 

Figure 1  Locations of rainfall stations in Macquarie Valley 
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Analysis of the observed data shows that the highest rainfalls are concentrated in the mountainous 
south-east corner of the catchment (Figure 2, left). There is a significant gradient over the catchment 
with a majority of the lower catchment receiving less than 500 mm rainfall on average. The seasonal 
distribution (Figure 2, right) shows that there is considerable variability across the sites. The highest 
rainfalls are in summer, autumn rainfall is less than summer and winter is more variable than other 
seasons. 

 

Figure 2 Distribution of average annual rainfall in Macquarie catchment (left) and monthly 
totals (right) 

2.1.2 Evaporation data 

Data were provided for 31 Morton Wet sites, 7 IQQM evaporation sites and 7 FAO56 reference crop 
sites (the term evaporation is used throughout to mean evapotranspiration). There are 45 separate 
evaporation time series, but only 31 unique locations, because the 7 IQQM and 7 FAO56 time series 
were co-located at Morton Wet locations. The sites are listed in Appendix A and shown in Figure 3. 
The Morton Wet and FAO56 reference crop data were obtained from the SILO database, so no 
values were missing and the data cover the period 1 January 1889 to 11 September 2018. The IQQM 
estimates span the period 1 January 1890 to 28 August 2017. All available data were used in the 
model calibration. 

The evaporation ranges from 1,100 mm in the mountainous south-east corner (Figure 4, top 
row) to 1,800 mm inland. There is a strong seasonal cycle, with highest evaporation in summer and 
lowest evaporation in winter (middle and bottom rows at monthly and daily timescales respectively). 
The 3 columns in Figure 4 show differences between the Morton Wet (left) IQQM (middle) and 
FAO56 (right) evaporation variants. The Morton Wet and FAO56 variants have similar features, with a 
gradient from east to west and similar magnitudes. The IQQM variant is noticeably different from the 
other versions, in that: 

• the magnitude is significantly higher and shows a different spatial pattern (middle column, top 
row) 

• the magnitude and the variability is higher (middle column, middle row) 

• the daily distribution is ‘blocky’ at the monthly scale with stippling showing persistence of the 
same value for many days within the month (middle column, bottom row). 
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The provenance of the IQQM data is pan evaporation data extended using longer co-located rainfall 
records. The statistical model used correlates total monthly evaporation with monthly rain days for 
each month, and extends using the longer rainfall data set, introducing a random component to 
preserve monthly standard deviation. This monthly total is then disaggregated to give a value for dry 
days and a value for wet days (equal to 0.7 times the dry day value). Distinct features of the modelled 
data are evident in the daily time series (Figure 5). 

The IQQM evaporation data are reasonable in that they are assumed to preserve the monthly 
distribution of evaporation, the seasonal cycle and known correlation with rainfall. The daily 
persistence of evaporation values has the implication that subsequent models based on these ‘data’ 
will have an anomalously high correlation at the daily scale. Also, although the mean of monthly 
evaporation totals is preserved, the variability of monthly totals is likely to be spuriously high. The 
interpretation for hydrological modelling is that, although the distribution of evaporation is 
preserved across multiple years, within any given year it could be biased due to persistence in daily 
evaporation (especially for blocks of dry days). Although this effect is noticeable in the evaporation 
data, it is not clear whether this is of practical significance to subsequent modelled flows. 

 

See Appendix A for site details. 

Figure 3  Locations of evaporation stations in Macquarie Valley 
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Top row shows the spatial distribution, middle row shows monthly averages for each year on record, bottom row shows distribution of daily evaporation for a representative site. 
IQQM data have a different spatial distribution, higher seasonal variation and ‘blocky’ daily distribution. 

Figure 4  (left) Morton Wet evaporation (middle) IQQM evaporation and (right) FAO56 evaporation 
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The IQQM data have distinctive characteristics based on how they were generated. The total for an individual month 
is determined from an empirical relationship (for that month) of total monthly evaporation and number of rain days. 
The total for that month is then distributed across the month as one value for days without rain and another for days 
with rain (set to 70% of the dry-day value). 

Figure 5 Daily IQQM station evaporation characteristics 

2.1.3 Instrumental records of low-frequency climatic variability 

Data for the IPO were obtained from Henley et al. (2015) for the period 1854–2018. The Hadley SST 
version of the IPO was used, and is plotted in Figure 6, showing periods when the IPO is in a positive 
or negative state. Because the IPO is constructed as a low-pass filter, estimates are not available in 
the first 5 or last 5 years of the record. The IPO estimates end in 2012, so the state from 2012 to 2018 
was assumed rather than excluding this period from the calibration. The IPO was used to partition 
data and calibrate the model separately to each partition. The partition years were: 

• positive phase: 1877–1888, 1896–1907, 1912–1942, 1978–1997 

• negative phase: 1889–1895, 1908–1911, 1943–1977, 1998–2012 (+ 2013–2018, assumed). 

 

Source: Henley et al. (2015) 

Figure 6 Time series of Interdecadal Pacific Oscillation (red) showing positive and negative states 
(black) 

2.1.4 Paleo records of low-frequency climatic variability 

Henley et al. (2011) developed a weighted average of 7 paleoclimatic time series, including those 
from tree rings and coral from the Pacific Ocean, to produce a combined paleo IPO signal (referred 
to as the CPIPO index). Figure 7 compares the instrumental IPO time series with the CPIPO time 
series; the comparison is favourable (Nash–Sutcliffe efficiency 0.75, and comparable distributions of 
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run lengths). The distribution of run lengths was analysed and found that the gamma distribution 
was the most appropriate model to represent the dwell time in each IPO phase (Henley et al. 2011). 
Figure 8 compares the distribution of dwell times from the instrumental and the paleo records. The 
paleoclimatic IPO distribution has a lower mean, but higher variance. Although the longest dwell 
time in the instrumental record was 35 years (Figure 7, 1943–1977, IPO negative), both distributions 
show that it is possible to achieve dwell times of much greater duration (upper tail of Figure 8). 

 

Source: Figure 1 from Henley et al. (2011) 

Figure 7 Comparison of the instrumental IPO time series with the combined paleo IPO time series, 
1550 to 2000 CE 

 

Source: from Henley et al. (2011) 

Figure 8 Distribution of dwell times for phases of the IPO; solid lines represent the estimated 
distribution from the instrumental IPO record, dashed lines represent the estimated 
distribution from paleoclimatic IPO reconstructions 

2.1.5 Analysis of IPO-partitioned rainfall data 

Partitioning the rainfall time series by the IPO (time periods listed in Section 2.2.3) demonstrates a 
systematic shift in amounts between the 2 climate states. Figure 9 shows that on average the 
difference in annual rainfall between the IPO positive and negative states is 90 mm and that the 
phenomenon is consistent across all sites. 

Figure 10 shows the time series of annual total rainfall for each year on record. The top panel shows 
the annual rainfall for each site (wettest on average shown at the top to driest at the bottom) along 
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with black lines that mark transitions in the IPO state. The bottom panel shows the average across all 
sites. A number of features of the rainfall are evident: 

• There is a strong rainfall gradient. Within a single year, annual totals can range from less 
than 300 mm to more than 1,800 mm. 

• There is significant variation from year to year. The annual total can shift substantially and does 
not necessarily persist with similar values for multiple years. 

• In addition to the overall variation in annual totals, there is the possibility for significantly above- 
or below-average periods to persist for multiple years (for example, 1890–1895 above average, 
1879–1982 below average). 

• The strength of spatial correlation is varied, but overall, very strong. The wettest years tend to 
have all sites with significantly increased rainfall (for example, 2010), whereas other ‘wet’ years 
have only a small number of very wet sites (for example, 1890s). To see this, consider the spread 
of yellow and red pixels, which represent the wettest sites: some years are very striped, showing 
that all sites have high rainfall, whereas other years show only a cluster of high-rainfall sites at 
the top of the top panel plot. 

• Although the IPO partitions yield a 90 mm average difference for each site (Figure 10), the 
distribution of annual totals shows that there is significant variability within the IPO state. For 
example, the period 1997–2018 is an IPO negative phase (nominally the ‘wet’ phase) but has a 
similar average to the preceding IPO positive period 1978–1997. 

 

Each vertical bar represents 1 site. The IPO negative state (blue symbols) show about ~90 mm more rainfall per year 
than the IPO positive state (red symbols). 

Figure 9 Mean annual rainfall at sites in Macquarie catchment reported by IPO phase 
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Annual evaporation for each site (top panel) with sites sorted by their long-term average, with site with highest 
average at the top and lowest average at the bottom. Arithmetic average across all sites (bottom panel). Black lines 
show years that IPO state changed. 

Figure 10 Yearly time series of annual total rainfall 

2.1.6 Analysis of IPO-partitioned evaporation data 

Figure 11 shows that for evaporation the effect of partitioning by the IPO is less pronounced than for 
rainfall. There is a 17 mm difference in evaporation between the positive and negative states. 
Figure 12 shows the time series of annual total evaporation for each year on record. The top panel 
shows the annual evaporation for each site (highest average evaporation shown at the top) along 
with black lines that mark transitions in the IPO state. As with the rainfall, there is significant variation 
from year to year, a pronounced gradient and spatial correlation leading to years when the majority 
of sites have above or below average evaporation. 

Figure 13 shows a scatterplot of annual rainfall with annual evaporation. There is a clear negative 
relationship between them. The plot shows years stratified by IPO phases; the 2 series overlap 
significantly, except for years with very high rainfall. 

 

 

Rain (mm) 
 

 
 

 

 

 

 

 

 

 

 

 



 

22 

 

Each vertical bar represents 1 site. The IPO negative state (blue symbols) show, approximately 17 mm less average 
annual evaporation than the IPO positive state. 

Figure 11 Mean annual evaporation at sites in Macquarie catchment reported by evaporation type 
and IPO phase 

 
Annual evaporation for each site (top panel) with sites sorted by their long-term average, with site with highest 
average at the top and lowest average at the bottom. Arithmetic average across all sites (bottom panel). Black lines 
show years that IPO state changed. 

Figure 12 Yearly time series of annual total evaporation (Morton Wet sites only) 
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Figure 13 Average annual rainfall vs average annual evaporation for evaporation sites, stratified 
by IPO phase 

2.2 Model specification – base model 
To simulate daily rainfall and evaporation at multiple sites, it is important to have a model that can 
reproduce the marginal distribution at each site as well as the correlations between all sites. The 
model requirements are different for rainfall and evaporation: 

• Rainfall – A large fraction of days are dry, and on rainy days the amount of rain follows a skewed 
distribution. There is temporal correlation in both the pattern of wet and dry values as well as the 
magnitudes. It is important to preserve this correlation because hydrological response can 
depend on the successive wetting and drying of a catchment. The correlation of wet values is 
also important for rainfall extremes, because many larger rural catchments have a flood response 
in the order of 1 or more days. Replication of both month-to-month and year-to-year variation in 
rainfall is important, so that the distribution of annual totals has appropriate variability. Lastly, it 
is possible for rainfall anomalies (above or below average periods) to persist for multiple years 
(or even decades), which is an essential consideration for drought studies. Spatially, it is 
important for a model to be flexible enough to permit differences at each site (for example, to 
represent trends across the catchment) as well as account for the correlation between sites (to 
reproduce catchment totals). 

• Evaporation – Unlike rainfall, evaporation is always positive, which makes fitting a distribution to 
the data easier. Nonetheless, at the daily scale evaporation can follow a nonsymmetric 
distribution and have a complicated correlation structure: there is a known negative relationship 
with rainfall, but also considerable persistence over many days. The seasonal cycle of evaporation 
is well defined and shows smooth variation over time. The mean is large compared with the 
variance. As with rainfall, annual and multiannual totals are important for modelling drought. 
Spatially, evaporation varies smoothly (compared with rainfall, which can be patchy). 

One popular approach for generating daily rainfall is a 2-step method that first simulates the wet–dry 
occurrences and then the conditional rainfall amounts (Kleiber et al. 2012; Wilks 1998). A challenge 
with this approach is to parsimoniously condition the amounts (whether rainfall or evaporation) on 
the wet–dry pattern, which can be challenging at multiple sites given the many wet/dry 
combinations. An alternative approach is to use a transformed latent (that is, hidden) variable that 
maps the wet and dry occurrences to a single distribution: dry values stem from the lower truncated 
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portion and the amounts stem from the upper portion (Baxevani and Lennartsson, 2015). A multisite 
version of this model was introduced by Rasmussen (2013), which has a convenient calibration 
structure to simplify the identification of parameters (the at-site means and standard deviations can 
be fitted separately from the autocorrelations and spatial correlations). 

The following sections provide a description of the model used in this study. A full technical 
explanation of the rainfall model can be found in Bennett et al. (2018), so the following sections 
provide a brief conceptual explanation of the rainfall component. A more detailed explanation is 
provided here for the evaporation and evaporation–rainfall relationship because this is not covered 
in Bennett et al. (2018). Given the complexities due to evaporation data having 3 different types 
(Morton Wet, IQQM, FAO56), details are provided on how the correlation between the types was 
structured. 

2.2.1 At-site rainfall model 

The rainfall model uses a latent variable concept, which proceeds by sampling from a normally 
distributed ‘hidden’ variable. This concept is shown in Figure 14. A latent variable can be transformed 
to a rainfall value by truncating values below zero and by rescaling values above zero to match the 
distribution of rainfall observations. The transformation of latent variable value to rainfall uses a 
power transformation. 

 

Figure 14 Schematic of latent variable concept 

Let 𝑟𝑟𝑡𝑡𝑖𝑖  be the rainfall at site 𝑖𝑖,  where 𝑖𝑖 = 1, … ,𝑁𝑁 and 𝑡𝑡 = 1, … ,𝑇𝑇 is the time (days). For example, a 
100-year simulation would have 𝑇𝑇 = 365 × 100 days (ignoring leap years). The rainfall amount can be 
related to a normally distributed latent variable, 𝑙𝑙𝑡𝑡𝑖𝑖 ,  via truncation and power transformation, 

𝑟𝑟𝑡𝑡𝑖𝑖 = ��𝑙𝑙𝑡𝑡𝑖𝑖�
𝛽𝛽𝑡𝑡𝑖𝑖  𝑙𝑙𝑡𝑡𝑖𝑖 > 0

0 otherwise
,where 𝑙𝑙𝑡𝑡~𝑁𝑁�𝜇𝜇𝑅𝑅𝑅𝑅𝑖𝑖 ,𝜎𝜎𝑅𝑅𝑅𝑅𝑖𝑖 �  (1) 

where 𝑟𝑟𝑡𝑡𝑖𝑖 is rainfall and 𝛽𝛽𝑡𝑡𝑖𝑖 is a power transformation parameter. Note that the distribution is specified 
by 2 parameters, 𝜇𝜇𝑅𝑅𝑅𝑅𝑖𝑖  and 𝜎𝜎𝑅𝑅𝑅𝑅𝑖𝑖 , the mean and standard deviation for each site and timestep. Here, the 
parameters are varied monthly, so all timesteps within the same month have identical parameters. 
Simulating from this distribution reproduces the daily distribution of rainfall for a given time period 
(for example, month), including the proportion of zeros. An advantage of the model is that it has 
parameters to match the mean and variability of daily rainfall. However, the transformation is not 
always perfect because it needs to match the moments of the rainfall distribution as well as the 
proportion of zero values. 

To model sequences of rainfall values, autocorrelation of the latent variable is considered. Because 
the variable is Gaussian, it is possible to use a single autocorrelation parameter for a given site to 
reproduce sequences of wet and dry values as well as correlation in wet day amounts. The 
temporal structure of the latent variable at a site is modelled via an autoregressive AR(1) process. 
That is, the value at time 𝑡𝑡 depends on that at time 𝑡𝑡 − 1 (sometimes referred to as ‘lag 1 
autocorrelation’): 

𝑙𝑙𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜑𝜑𝑅𝑅𝑅𝑅 (𝑙𝑙𝑡𝑡−1 − 𝜇𝜇𝑅𝑅𝑡𝑡−1) + 𝜖𝜖𝑡𝑡 (2) 
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where 𝜑𝜑𝑅𝑅𝑡𝑡 is the autoregressive parameter and the autoregressive error distribution 𝜖𝜖𝑡𝑡 is 
normally distributed, which is to say 

𝜖𝜖𝑡𝑡~𝑁𝑁 �0,�1 − 𝜑𝜑𝑅𝑅𝑅𝑅2 𝜎𝜎𝑅𝑅𝑅𝑅�. (3) 

Figure 15 shows the autoregressive parameter for 100 sites for each month. There is a significant 
variation in the parameter values within a given month. It is possible to accommodate these 
differences when single sites are generated independently, but it is difficult to preserve this feature in 
a multisite setting (Rasmussen 2013). For this reason, only the average value is used for each month. 
The result of this assumption is a loss of variability at the daily timescale, which affects wet–dry 
patterns and wet and dry spell durations. 

 

Figure 15 Distribution of lag 1 daily autocorrelation parameter across rainfall sites for each month 

A simulation of the single-site daily rainfall model is illustrated in Figure 16 for 100 replicates 
aggregated to monthly totals and compared to the corresponding observations (red symbol). 

 

Figure 16 Distribution of rainfall; observed (red symbol) versus 100 simulated replicates (grey lines) 
monthly means (left) and monthly standard deviations (right) 
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2.2.2 At-site evaporation model 

Whereas rainfall is highly variable, has a skewed distribution and complex wet–dry pattern, 
evaporation is a continuous variable (no zeros) and is significantly less skewed. Figure 17 shows a 
box plot summary of daily evaporation for each month at a representative site. While the seasonal 
variation is obvious, a subtle feature of these data is that summer evaporation is skewed, as 
suggested by the outliers. This is explored in more detail below. 

 

Figure 17 Distribution of daily evaporation for a representative site for each month 

Figure 18 depicts the method used to generate the skewed distribution of daily evaporation, 
especially for summer months. A split normal distribution is used in which the half above the mode 
has a different standard deviation from the half below the mode. 

 

Figure 18 Schematic of method used to reproduce skewness in distribution of daily evaporation 

Given the strong seasonal signal and the smooth transition in evaporation between seasons, a 
sinusoidal method was used to model daily evaporation (whereas the rainfall model has sets of 
12 parameters to represent each month). Figure 19 (top) shows the distribution of daily evaporation 
for all years from a representative site along with a mean sinusoid trend fitted to the data. 
Subtracting this trend from the data yields residuals with zero mean, but with evidence of seasonality 
in the variation. 
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The sinusoidal equations for the mean evaporation, 𝜇𝜇𝐸𝐸,𝑡𝑡, on a given day, t, is specified by the 
linear regression: 

𝜇𝜇𝐸𝐸,𝑡𝑡 = 𝜃𝜃1 + 𝜃𝜃2cos(2𝜋𝜋𝜋𝜋/365.25) + 𝜃𝜃3sin(2𝜋𝜋𝜋𝜋/365.25) (4) 

where the 𝜃𝜃i are the regression coefficients and 𝑡𝑡 is the day. After the mean model is fitted, the 
residuals of the evaporation are calculated as 

𝐸𝐸𝑡𝑡′ = 𝐸𝐸𝑡𝑡 − 𝜇𝜇𝐸𝐸,𝑡𝑡 (5) 

where the fitted mean is subtracted away from the observed evaporation, 𝐸𝐸𝑡𝑡, to give the residuals, 𝐸𝐸′. 

 

Figure 19 Daily evaporation for a representative site (top) fitted mean trend, (bottom) residuals 
after removing the mean 

Sinusoidal regression equations can be fitted to the positive and negative aspects of the residuals 
(Figure 20): 

𝜎𝜎𝐸𝐸,𝑡𝑡
+ = 𝜃𝜃4 + 𝜃𝜃5cos(2𝜋𝜋𝜋𝜋/365.25) + 𝜃𝜃6sin(2𝜋𝜋𝜋𝜋/365.25) (6) 

𝜎𝜎𝐸𝐸,𝑡𝑡
− = 𝜃𝜃7 + 𝜃𝜃8cos(2𝜋𝜋𝜋𝜋/365.25) + 𝜃𝜃9sin(2𝜋𝜋𝜋𝜋/365.25) (7) 

where 𝜎𝜎𝐸𝐸,𝑡𝑡
+  is the standard deviation parameter of the positive residuals for a given day and 𝜎𝜎𝐸𝐸,𝑡𝑡

−  
is the counterpart for the negative residuals. 
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The standardised residuals, 𝐸𝐸′′, are obtained by dividing the evaporation residuals, 𝐸𝐸′, by the 
relevant standard deviation parameter for a given day: 

𝐸𝐸𝑡𝑡′′ = �
𝐸𝐸𝑡𝑡′/𝜎𝜎𝐸𝐸,𝑡𝑡

+   𝐸𝐸𝑡𝑡′ > 0
𝐸𝐸𝑡𝑡′/𝜎𝜎𝐸𝐸,𝑡𝑡

−     𝐸𝐸𝑡𝑡′ ≤ 0. (8) 

 

Figure 20 Fitted trends to mean-corrected residuals (top) positive and (bottom) negative 

An example of the standardised residuals is shown in Figure 21. The overall spread of the distribution 
is approximately normal, but there are some noticeable artefacts. The distribution is not identically 
distributed throughout the year, because the sinusoid is not a perfect fit for the seasonality. There is 
a ‘fingerprint’ stippling effect in the middle of the year, due to (i) the sinusoidal transformation 
(causing the curve) and (ii) the digitised input (values are rounded to only 1 decimal place), along 
with the small range of values in winter (Figure 19) causing the transformed values to appear 
quantised. None of these artefacts is significant because the normal distribution is a good 
approximation to the standardised residuals. 
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Figure 21 Standardised residuals of evaporation 

After the standardised residuals are obtained, it is necessary to determine the autocorrelation 
structure of the residuals. Figure 22 shows the autocorrelation for a representative site. An AR(1) 
autoregressive model is used to represent the temporal correlation structure of evaporation: 

𝐸𝐸𝑡𝑡′′ = 0 + 𝜑𝜑𝐸𝐸𝐸𝐸(𝐸𝐸𝑡𝑡−1′′ − 0) + 𝜖𝜖𝑡𝑡 (9) 

where the mean of the residuals is 0, 𝜑𝜑𝐸𝐸𝐸𝐸 is the autoregressive parameter and the autoregressive 
error distribution 𝜖𝜖𝑡𝑡 is normally distributed – that is 

𝜖𝜖𝑡𝑡~𝑁𝑁 �0,�1 − 𝜑𝜑𝐸𝐸𝐸𝐸2 �. (10) 

The autoregressive model can reproduce the main correlations in the first few lags, but it does not 
reproduce the low levels of correlation present up to lag 40. 

 

Figure 22 Autocorrelation function (ACF) of standardised residuals for a representative site, horizontal 
axis represents daily lags 

A simulation of 100 replicates of the single-site evaporation model is shown at the daily scale in 
Figure 23 and at the monthly scale in Figure 24, which gives monthly mean and monthly standard 
deviation. The dashed lines show the 99.7% confidence intervals of the simulations, which agree with 
the underlying distribution of observations (grey symbols). Even with the split normal distribution, 
there is a noticeable discrepancy in the lower tail of the summer months (observed grey values can 
be seen to be below the red simulated values). This is caused by a limitation of the sinusoid linear 
regression: an explanatory variable with a sharper transition than a sinusoid would be required to 
allow for higher variability in the summer months. 
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Grey symbols are observations, red symbols are simulation. Solid purple shows the simulated mean, solid blue/green 
show the lower/upper 95% interval and dashed blue/green show the lower/upper 99.7% interval 

Figure 23 Example simulation from single-site model of evaporation 

 

Figure 24 Distribution of rainfall. Observed (red symbol) versus 100 simulated replicates (grey lines) 
monthly means (left) and monthly standard deviations (right) 

2.2.3 Multisite rainfall model 

Developing the multisite model from the single-site model requires the spatial cross-correlation 
between sites. An example of the correlation with distance is shown for 100 pairs of rainfall sites for a 
selected month (all the months look similar). There is a noticeable scatter in the data due to variation 
within the region, but it is nonetheless very high (for example, even at 250 km separation, the 
correlation is 0.6) (Figure 25). Because the model is a multisite model, it is possible to fit the sample 
correlations exactly. In other words, because it is not required to infill or interpolate between the 
gauges, there is no need to fit a smooth correlation function to the data (which would reduce the 
modelled variability). Estimating the pairwise correlation for all sites yields the correlation matrix 
shown in Figure 26. The main point of interest is the blue stripes that persist in a couple of the rows 
and columns, indicating these sites are weakly correlated to the rest of the region (for example, sites 
R10, R12, R13 and R22). Given there are 100 sites, the lower correlation at these sites is not likely to 
have a big impact on the overall catchment rainfall. 
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Figure 25 Rainfall sample correlation values with distance (km) for a representative site and month 

 

Figure 26 Rain–rain correlation matrix for 100 sites 

2.2.4 Multisite evaporation model 

The correlation structure of the evaporation data is more complicated because of the 3 different 
types. As with the rainfall, it is not necessary to fit a smoothed correlation function to the data 
because a multisite model is being used (rather than a model continuous in space). An example of 
the evaporation correlations is shown in Figure 27. A colour-coded matrix is provided in the right 
panel of Figure 27 to show the pairings of the various types. As with rainfall, there are significant 
correlations with distance, and the correlation at 250 km separation is approximately 0.6 when each 
type (Mwet – black, IQQM – blue, FAO56 – red) is compared to itself. When there is a cross-
correlation between 2 different types of evaporation, the correlation is lower (for example, FAO56 
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with Mwet – magenta). The IQQM evaporations have the lowest correlation to other data (Mwet – 
orange, FAO56 – green), suggesting these data are not strongly related to the other evaporation 
data types for the region. This can also be seen in the correlation matrix (Figure 28). 

 
Banding of the correlation is evident due pairing of the different types of evaporation: Mwet–Mwet (black); Mwet–
IQQM (orange); Mwet–FAO56 (magenta); IQQM–IQQM (blue); IQQM–FAO56 (green) and FAO56–FAO56 (red). The 
right image gives a key for the different pairings of evaporation type in the structure of the correlation matrix. 

Figure 27  Structure of evaporation correlations (left) shows sample correlation with distance for a 
representative site for different evaporation types 

 

Figure 28 Evaporation–evaporation correlation matrix for 45 sites 
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2.2.5 Joint simulation of rainfall and evaporation 

Using the multisite specifications in the prior sections, it is possible to simulate multisite rainfall at 
100 sites, or multisite evaporation at 45 sites, but not (yet) possible to jointly simulate rainfall and 
evaporation at 145 sites. To achieve this, the correlation between rainfall and evaporation must be 
accounted for. Figure 29 shows a representative analysis of rain–evaporation correlation with 
distance. The correlation is negative and typically in the range −0.2 to −0.3, even for distances 
250 km apart. As with Figure 27, there is a small degree of striping, which is due to the different 
evaporation types. 

An exponential correlation function is fitted (red line) to the rainfall–evaporation cross-correlations 

COR(𝑑𝑑)=C exp(−𝑑𝑑/𝛼𝛼) (11) 

where COR(𝑑𝑑) is the correlation, 𝑑𝑑 is the distance between a pair of locations, 𝛼𝛼 is the range 
parameter and 𝐶𝐶 is the scale parameter. A model is fitted to the cross-correlations to ensure the 
robustness of the overall correlation model (when using sample correlations there can be issues with 
the positive definite structure of the correlation matrix). Using a fitted model introduces some 
smoothness into this element of the correlations, but it should not be significant because the 
correlations are relatively low and because they are relatively consistent (from −0.2 to −0.3). 

 

Figure 29 Rainfall–evaporation sample correlation values with distance (km) for a representative site 
and month, observations (black) and fitted correlation function (red) 

Figure 30 shows a jointly populated rainfall–evaporation correlation matrix in which the diagonal 
terms reproduce the existing rain–rain (Figure 27) and evaporation–evaporation (Figure 28) 
correlation matrices. The off-diagonal elements are based on correlations from Figure 29. 

Figure 31 shows the extension of the spatial rainfall–evaporation correlation model (Figure 29) to 
include the lag-1 correlation parameter. The diagonal terms give the lag-0 spatial correlations for 
timesteps 𝑡𝑡 and 𝑡𝑡 + 1, respectively. The off-diagonal terms give the lag-1 space–time correlations (for 
example, site 𝑖𝑖 at time 𝑡𝑡 with respect to site 𝑗𝑗 at time 𝑡𝑡 + 1). The space–time correlations are obtained 
by assuming a contemporaneous model structure (Rasmussen, 2013). This means that the space–
time correlation can be decomposed into a spatial correlation multiplied by a single temporal 
correlation (for that month), which is the same at all sites. The benefit of this assumption is model 
stability. The limitation of this assumption is that all sites must use the same autocorrelation 
parameter (as noted in Figure 15, it is variable). An implication of this assumption is a reduction in 
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the ability to accurately represent different sites (they will all have the same autocorrelation for the 
latent variable). This means that statistics strongly associated with autocorrelation at the daily scale 
may lack variability (for example, length of daily wet and dry spells). The correlation matrix in 
Figure 31 represents a full specification of the correlation structure needed to simulate the model 
across all sites and multiple timesteps for a given calibration period. 

 

Rain–rain correlation is the bottom-left block (Figure 26); evaporation–evaporation is the top-right block (Figure 28) 
and the off-diagonal blocks showing negative correlations are obtained from the rain–evaporation function 
(Figure 29) 

Figure 30 Nested block correlation matrix of a joint simulation of 100 rain sites and 45 evaporation 
sites 



 

35 

 

Lower-left block – time (t, t) – and upper-right block – (t + 1, t + 1) – are nested matrices from Figure 30 of static 
spatial correlations; the off-diagonal blocks represent the lag-1 in time (t, t + 1) cross-correlations between pairs of 
sites. The off-diagonals are rescaled from the spatial correlations by a constant autocorrelation parameter across all 
sites (space–time separable covariance structure). 

Figure 31 Nested block correlation matrix joint simulation of 145 sites and 2 timesteps; t and t + 1 

2.3 Extended model specification – climatic variability and 
future climate 

2.3.1 IPO dwell-time distribution from instrumental and paleoclimatic 
record 

The IPO is modelled as being in 1 of 2 states –  negative and positive. Let 𝑫𝑫− = (𝐷𝐷1−,𝐷𝐷2−, … ) 
denote the dwelling time in the negative IPO state and 𝑫𝑫+ = (𝐷𝐷1+,𝐷𝐷2+, … ) denote the dwelling time 
in the positive IPO state, in years. The IPO is modelled as an alternating renewal process in 
which the system starts in an arbitrary state (for example, the positive state) and persists in that 
state for a duration 𝐷𝐷1+ before transitioning to the negative state for a period 𝐷𝐷1−, and then back to 
positive for the duration 𝐷𝐷2+, and so on. The oscillation continues for a number of cycles, 𝑛𝑛𝑛𝑛, until 
the total duration equals the length of the simulation; that is, ∑ �𝐷𝐷𝑗𝑗+ + 𝐷𝐷𝑗𝑗−�𝑛𝑛𝑛𝑛

𝑗𝑗=1 = 𝑇𝑇/365, where 𝑇𝑇 is 
total simulation length in days. All dwelling times are considered to be independent and 
identically distributed, and to come from a gamma distribution, 𝑓𝑓(𝑥𝑥) (Figure 4 in Henley et al. 
2011,), defined as 

𝑓𝑓(𝑥𝑥) = 1
𝑠𝑠𝑎𝑎Γ(𝑎𝑎)𝑥𝑥

𝑎𝑎−1 exp �− 𝑥𝑥
𝑠𝑠
� (12) 

where 𝑎𝑎 is the shape parameter, 𝑠𝑠 is the scale parameter and Γ(𝑎𝑎) is the gamma function. For the jth 
year, the dwelling time, whether in the positive or negative state, is independently sampled from the 
gamma distribution 

𝐷𝐷𝑗𝑗∓ ∼ Gamma(𝑎𝑎, 𝑠𝑠) (13) 
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where the parameters are related to the distribution mean, 𝑚𝑚, and standard deviation, 𝑠𝑠, by 
𝑎𝑎 = (𝑚𝑚/𝑠𝑠)2 and 𝑠𝑠 = (𝑚𝑚/𝑠𝑠)2/𝑚𝑚. 

For the instrumental IPO record, the dwelling time distribution for IPO phases has the properties, 
𝑚𝑚 = 17 and 𝑠𝑠 = 8, and for the paleoclimatic IPO record, 𝑚𝑚 = 15 and 𝑠𝑠 = 10 (Henley et al. 2011). An 
example simulation is shown for 1,000 years, based on parameters from the IPO instrumental record. 
A state persisting for 58 years can be seen between years 88 and 144 (Figure 32). 

 

Figure 32 Example simulation of 1,000 years of IPO states from the alternating renewal model with 
parameters from the IPO instrumental record 

2.4 Model calibration 
Details of the calibration procedure are provided in Bennett et al. (2018); therefore, only an overview 
is provided here. At all stages, the method of moments and least squares are used to determine 
parameters. 

2.4.1 Step 1 Rainfall: single-site rainfall distribution 

The data for each site are partitioned monthly, where separate parameters are found for each month 
on record. The mean and standard deviation of rainfall amounts, as well as the proportion of dry 
days, are calculated. These statistics are matched to the corresponding properties of the 
truncated, power-transformed normal distribution from Eq. (1), having parameters 𝜇𝜇𝑅𝑅𝑅𝑅𝑖𝑖 ,  𝜎𝜎𝑅𝑅𝑅𝑅𝑖𝑖 ,  
and 𝛽𝛽. Thus, there are 3 × 12 parameters per site. 

2.4.2 Step 2 Rainfall: single-site temporal correlation 

The autocorrelation is calculated for each site based on the rain-day periods for a given month. To 
determine the parameter 𝜑𝜑𝑅𝑅t, this statistic is transformed to have correlation equivalent to the 
underlying latent variable by accounting for the effects of truncation (Bennett et al. 2018). There is 
1 parameter per month per site. However, the contemporaneous multisite autoregressive model 
requires a common autocorrelation parameter for all sites. The parameter value is averaged across all 
sites to yield 1 parameter per month. 

2.4.3 Step 3 Rainfall: spatial correlation 

The procedure for estimating spatial correlation is identical to single-site autocorrelation, except that 
it is calculated for the lag-0 in time cross-correlation for a pair of sites. Because the model is not 
continuous in space, it is not necessary to fit a correlation function. Instead, the sample correlations 
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for each pair of sites can be used to parameterise the correlation matrix. For 𝑛𝑛 = 100 sites there 
are 𝑛𝑛(𝑛𝑛 − 1)/2 = 4,950 unique pairs of sites (that is, 4,950 parameters per month). 

2.4.4 Step 4 Evaporation: single-site evaporation distribution 

The regression function for the mean daily evaporation is fitted first to the daily observations using 
Eq. (4) and then subtracted from the observations to produce a residual time series, Eq. (5). The 
residuals are split according to positive and negative values, with a separate regression function 
fitted to each partition, Eq. (6) and Eq. (7). On dividing through by the fitted model, 
standardised residuals are obtained using Eq. (8). The remaining time series is assumed to be 
normally distributed. There are 3 sets of regression equations, each having 3 parameters, giving 
9 parameters per site. 

2.4.5 Step 5 Evaporation: single-site temporal correlation 

The lag-1 autocorrelation is calculated from the standardised residual observed time series (obtained 
from Step 4). This parameter, 𝜑𝜑𝐸𝐸t, is set equal to the lag-1 sample autocorrelation. As with the 
rainfall autocorrelation, this value is averaged across all sites, yielding a contemporaneous version of 
the evaporation model. Thus, there is only 1 parameter per month. 

2.4.6 Step 6 Evaporation: spatial correlation 

The lag-0 cross-correlation for all pairs of evaporation sites is calculated. Because the model is not 
continuous in space, it is not necessary to fit a correlation function. Instead, the sample correlations 
can be used for each pair of sites to parameterise the correlation matrix. For 𝑛𝑛 = 45 sites there are 
𝑛𝑛(𝑛𝑛 − 1)/2 = 990 unique pairs of sites (that is, 990 parameters per month). As discussed with respect 
to Figure 27, the different types of evaporation have different correlation properties, but these are 
directly represented in the correlation matrix because each pair of sites has its own sample 
correlation. 

2.4.7 Step 7 Rainfall–evaporation: spatial correlation 

The lag-0 in time cross-correlation is calculated between each of the 100 rainfall sites and the 
45 evaporation sites. The parameters of the correlation function (range 𝛼𝛼 and scale 𝐶𝐶 in Eq. (11)) are 
fitted to the cross-correlations using least squares. There are 2 parameters fitted per month. The 
correlation function is used instead of sample correlations for improved model stability. 

2.4.8 Step 8 Space–time correlation 

There are no extra steps required to fit the space–time correlations; that is, the lag-1 in time cross-
correlation between sites. These correlations are assumed to follow a space–time separable structure. 
In other words the lag-1 cross-correlation is obtained from the lag-1 autocorrelation (Steps 2 and 5) 
multiplied by the lag-0 cross-correlation (Steps 3, 6 and 7). 

2.4.9 Step 9 IPO calibration 

Steps 1 to 8 specify the model calibration requirements for Model A – the base model. To calibrate 
the model for Model B, the time series are partitioned into the IPO positive and negative states 
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indicated in Section 2.1.3. A separate set of parameters is fitted to each partition. The parameters for 
the dwelling time in each IPO phase are obtained from Henley et al. (2011). 

2.5 Model evaluation 
Evaluation of stochastically generated weather can involve many different aspects including a range 
of timescales, locations and statistics of relevance. Many evaluation methods rely on visual inspection 
and qualitative assessment. Bennett et al. (2018) demonstrated the benefit of using a systematic 
quantitative assessment, which provides consistent evaluation and the ability to pool evaluations 
over a larger grouping. 

The general approach of Bennett et al. (2018) is used here. It uses 3 categories, Good, Fair and Poor. 
A variation has been made to the performance criterion for the Fair category, which had limited 
utility in Bennett et al. (2018) as a ‘borderline’ category. The following sections outline the rules of 
the specific tests. It is not important for the tests to represent a statistical hypothesis test, only that 
they can reliably differentiate between classes of performance and provide a relative measure. 
Performance plots of all the relevant statistics are also provided in annexes to this report for each 
location, which enables visual inspection of the results in conjunction with the formal model 
evaluation approach. Regardless of the method, interpreting the evaluation requires consideration of 
the relevance of the statistic to the application of interest. 

2.5.1 Evaluation of distribution quantiles 

A common case to evaluate is how well the quantiles of a distribution are matched between 
observations and simulations. Figure 33 provides a schematic illustration of 2 tests used to evaluate 
‘goodness of fit’ of distribution quantiles and classify the fit of the entire distribution into a relevant 
category. The 2 tests are: 

• Test 1: Are more than 90% of the observations within the 90% confidence intervals of the 
simulation? 
– If the first test is passed, a classification of Good is applied. This is shown in example A 

(Figure 33), in which only a few quantiles are outside the interval. 
– If test 1 is not passed, test 2 ins applied. This is shown in example B, in which many quantiles 

are outside the interval. 

• Test 2: When comparing the simulated 90% confidence intervals to the 90% range of sampling 
variability for each statistic, are more than 90% of the intervals overlapping? 
– This test is more lenient than test 1. A bootstrap method can be used to calculate the sample 

variability of the observed statistic. If more than 90% of quantiles overlap, a classification of 
Fair is applied (see example C). 

– If both tests are failed, a classification of Poor is applied (see example D). 
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FF 

In example A, >90% of observations are inside the simulated 90% confidence interval (Good). In example B, <90% of 
observations are inside the simulated confidence interval, so test 2 is used. In example C, >90% of sample statistic 
intervals overlap the simulated 90% confidence interval (Fair). Example D fails both tests (Poor). Examples used 
129 data points. 

Figure 33 Flow chart of performance classification for annual distributions into 3 categories (Good, 
Fair, Poor) using the criteria specified, according to 2 tests 
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2.5.2 Evaluation of distribution of monthly totals 

Another common case is to evaluate the distribution of monthly totals, because the model uses 
monthly parameters for some aspects and because of the significance of the seasonal cycle. The 
evaluation in this report considers the mean and standard deviation of monthly totals from 129-year 
record lengths. Having multiple simulated replicates (for example, 77 replicates) produces a 
distribution of means and a distribution of standard deviations of monthly totals. 

The same tests used on the quantiles (Section 2.5.1) are used on the distribution of means and 
distribution of standard deviation for the 12 months. The same concept of requiring a 90% match is 
applied, but in the context of monthly distributions there are only 12 data points, so the criterion is 
rounded so that 11 of the 12 months must be within the confidence interval. 

Figure 34 provides a flow chart for this type of test, which is very similar to the test illustrated in 
Figure 33. Note that Good and Fair labels can be achieved only if no more than 1 month’s observed 
statistic is outside the simulated limits. As in Figure 33, test 2 is more lenient because it allows for 
sample variability in the observations. Based on sampling properties of the normal distribution, the 
sample variability for the mean monthly total can be calculated analytically for the 90% limits 
as 𝑋𝑋𝜇𝜇90% = 𝜇̂𝜇 ± 1.64σ�/√𝑛𝑛 and for the 90% limits of the standard deviation of monthly totals as 
𝑋𝑋σ90% = σ� ± 1.64σ�/√2𝑛𝑛, where 𝜇̂𝜇 is the estimated mean of observed monthly totals, σ� is the estimated 
standard deviation of the observed monthly totals and 𝑛𝑛 is the number of observations (here 
𝑛𝑛 = 129, because each month is observed once a year for 129 years). 

2.5.3 Pooling performance over multiple sites 

Table 4 shows the rules used to pool multiple sites and determine an overall summary classification 
for that statistic. When more than 50% of the individual sites are labelled Good, a classification of 
Overall Good is applied to that statistic. A similar rule is applied to determine the classifications 
Overall Fair and Overall Poor. If no single category captures more than 50% of sites, the labels 
Overall Fair – Good, Overall Fair – Poor and Overall Variable are used, according to the rules outlined 
in Table 4. 

Table 4 Aggregate performance categorisation criteria 

Overall 
performance 

category 

Definition: Sites in 
performance 
category (%) 

Example:  
Good model 

performance (%) 

Example:  
Fair model 

performance (%) 

Example:  
Poor model 

performance (%) 

Overall Good Good is > 50% 85 10 5 

Overall Fair Fair is > 50% 5 85 10 

Overall Poor Poor is > 50% 10 5 85 

Overall Fair – Good Fair & Good is > 
Poor 35 55 10 

Overall Fair – Poor Fair & Poor is > 
Good 10 35 55 

Overall Variable Good & Poor is > 
Fair 35 20 45 

Source: Bennett et al. (2018) 
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In example A, >90% of observations fall inside the simulated 90% confidence interval (Good). In example B, <90% of 
observations fall inside the simulated 90% confidence interval, so test 2 is invoked. In example C, >90% of sample 
statistic intervals overlap with the simulated 90% confidence intervals (Fair). Example D fails both tests (Poor). 

Figure 33 Flow chart of performance classification of simulation into 3 categories (Good, Fair, Poor) 
using the criteria specified, according to 2 tests 
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3.1 Model evaluation summary 
Performance evaluation in this section focuses on Model C, which is the most informative simulation 
from the historical record because it includes information based on the paleoclimate IPO. Because 
Model C is intended as the primary output for representing the historical record, it is evaluated in 
detail in this section, with discussion of performance at representative sites and reference to annex 
documentation for assessment of all sites. 

The performance summary of Model A (base model) and Model B (instrumental IPO) is provided in 
Appendix B, but annex documentation for site-by-site analyses of these model variants has been 
omitted (it can be provided on request). The comparison shows that the overall performance across 
the model variants is similar. 

Table 5 summarises the performance of the rainfall across the 100 sites for Model C. Specifically: 

• The strength of the model can be seen in its ability to reproduce totals at monthly, annual, 
interannual and decadal scales. The 1-, 2-, 5- and 10-year totals are Overall Good, with only 
8 sites out of 100 receiving an evaluation of Fair at one or more of these scales. 

• The mean of monthly totals is matched perfectly at all sites, but the standard deviation of 
monthly totals is Overall Fair, and the simulations are typically more variable at the monthly 
scale. 

• The distribution of the proportion of wet days at the annual scale is shown to be Overall Poor. 
This is a known limitation of the model (Bennett et al. 2018), and is due to simplifying 
assumptions in the temporal correlation structure. The characteristics of the performance are 
discussed in detail in Section 3.2.3. The succinct explanation is that the model outputs are less 
variable than the observations. This can be seen in Table 5 – although the mean of the monthly 
proportion of wet days is Overall Good (that is, the process is unbiased at most sites), the 
standard deviation in the monthly proportion of wet days is only Overall Fair. 

• The annual maximums are Overall Good for 1-day maximums and Overall Fair for multiday 
accumulations. Section 3.2.5 will demonstrate that despite the Fair performance at the majority of 
sites, the simulations do not deviate far from the observations. The Overall Fair performance is a 
consequence of simplifications in the temporal correlation structure of the model (Section 2.2.1). 
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Table 5 Rainfall evaluation summary of performance, Model C, paleoclimatic IPO model variant, 
117 rainfall sites 129 years length, 77 replicates 

Statistic Overall 
performance 

category* 

Good model 
performance 

(%) 

Fair model 
performance 

(%) 

Poor model 
performance 

(%) 

Distribution of annual total rainfall Good 99 1 0 

Distribution of 2-year rainfall totals Good 99 1 0 

Distribution of 5-year rainfall totals Good 98 1 1 

Distribution of 10-year rainfall 
totals Good 97 3 0 

Mean of monthly rainfall totals Good 100 0 0 

Standard deviation of monthly rain 
totals Fair 21 79 0 

Distribution of annual proportion 
of wet days Poor 4 21 75 

Mean of monthly proportion of 
wet days Good 97 3 0 

Standard deviation of monthly 
proportion of wet days Fair 26 70 4 

Annual 1-day rainfall maximum 
distribution Good 51 49 0 

Annual 2-day rainfall maximum 
distribution Fair 4 90 6 

Annual 3-day rainfall maximum 
distribution Fair 5 92 3 

 

*See Table 4 for categorisation criteria. 

Table 6 provides the performance summary for the evaporation simulations, which is based on 
45 sites. Similar to the rainfall evaluation, the performance is Overall Good for the totals at the 
annual and interannual scales. At the monthly scale, the characteristics of the model are similar to 
the rainfall, in that the modelling of the mean of monthly evaporation totals is Overall Good but the 
standard deviation of monthly totals is Overall Fair. The sites with Poor performance in the standard 
deviation of monthly totals are the IQQM evaporation sites, where the mismatch in performance 
occurs due to an artefact of the observed data (discussed in Section 3.2.7). 
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Table 6 Evaporation evaluation summary of performance, Model C, paleoclimatic IPO model 
variant, 79 evaporation sites 129 years length, 77 replicates 

Statistic Overall 
performance 
category* 

Good model 
performance 
(%) 

Fair model 
performance 
(%) 

Poor model 
performance 
(%) 

Distribution of annual total 
evaporation Good 90 9 1 

Distribution of 2-year evaporation 
totals Good 91 9 0 

Distribution of 5-year evaporation 
totals Good 90 10 0 

Distribution of 10-year 
evaporation totals Good 86 11 3 

Mean of monthly evaporation 
totals Good 100 0 0 

Standard deviation monthly 
evaporation totals Good 90 0 10 

*See Table 4 for categorisation criteria. 

3.2 Detailed evaluation of distributions 

3.2.1 Multiyear annual rainfall totals (1, 2, 5 and 10 years) 

From Table 5, the quality of the modelling of annual rainfall totals at 1 or more years is Overall Good, 
with almost all sites showing Good performance. Statistics at the annual, multiyear and decadal 
scales must be well-modelled for adequate drought risk assessment. The Overall Good performance 
of these statistics indicates that the seasonal component and climatic components of the model are 
functioning with appropriate levels of variability. 

Figure 35 shows an example using site R86, selected because it has an evaluation of both Good (at 
the 1-, 2- and 10-year scales) and Fair (at the 5-year scale). The Good evaluation is typical of the 
performance of this statistic and shows that the mean and variability of the simulations match the 
observations well. Assessing the Fair performance, it is clear that the mean and variability of the 
simulations is acceptable, with the simulations not deviating far from the observations. From 
Figure 35, by comparing the lowest total in each panel to the lower 90% limit, the simulations are 
able to generate rainfall totals below the lowest values in the observation record. 
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Simulated rainfall and its 90% confidence interval. Performance classifications shown. 

Figure 35 Distribution of annual rainfall totals for 1-, 2-, 5- and 10-year totals for a representative 
location 
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3.2.2 Mean and standard deviation of monthly rainfall totals 

From Table 5, the quality of the modelling of the means of the monthly totals is Overall Good, and 
that of the standard deviations of the monthly totals is Overall Fair. Figure 36 provides an example 
for site R1, which is typical for the majority of sites. No site exhibits Poor performance. The model 
reproduces mean values well, which is expected from this model because each site has its own mean 
parameter. Although each site has a standard deviation parameter, the standard deviation of 
monthly totals is also affected by the autocorrelation process at daily and monthly scales. 

Figure 36 (left panel) shows that the means of the monthly totals are Good. The right panel shows 
that the 90% intervals for the standard deviations from the simulations are higher than the 
observations for the months May to August (leading to the classification of Fair). To help with 
interpreting this difference, Figure 37 provides the full distribution of monthly totals for one replicate 
at this site. The interquartile range of the boxes is very similar for all months, but the upper tail of 
the distribution (the whisker and outliers) is typically heavier in the simulation (grey boxes). A 
practical interpretation is that the simulation has occasional very wet months that are wetter than the 
observations suggest are likely. Because the distribution of monthly totals is skewed, standard 
deviations in Figure 36 are sensitive to the behaviour of the tail. 

 

Observed in red, simulated in grey. Whiskers of grey box plot extend to the 90% interval. Performance classifications 
shown. 

Figure 36 Distribution of (left) means of monthly totals; (right) standard deviations of monthly totals 

 

Grey monthly boxplot has 129 years of simulated data from one replicate and red monthly boxplot has 129 years of 
observations. 

Figure 37 Paired comparison of full distribution of monthly totals for one representative site, 
R1 50018, and one replicate 
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3.2.3 Annual wet day proportion 

From Table 5, the distribution of the proportion of wet days at the annual scale is Overall Poor. 
Figure 38 provides example for 4 representative sites: R1, R2, R3 and R4. In all examples, the 
distributions are unbiased, but the variability of the simulations is typically less than that of the 
observations. 

To illustrate this performance, Table 7 compares the observed number of wet days for the driest year 
on record to the equivalent value from simulated replicates. This comparison corresponds to the 
lowest observation in each plot from Figure 38 relative to the simulated values at that quantile 
(where the number of wet days is obtained from the proportion by multiplication by 365.25). 
Interpreting Table 7, for the driest year, the observed numbers of wet days at the Poor sites R3 and 
R4 were respectively 11 and 10 fewer wet days than the median. Taking the 90% limits of the 
simulations as representative of the spread of the model, the observed statistic is not inside this 
range at the Poor sites. 

Table 7 Observed versus simulation comparison for 4 representative sites 

Site Classification Number of wet 
days 

(observed) 

Number of wet 
days 

(simulated) 
Lower limit 

Number of wet 
days 

(simulated) 
Median 

Number of wet 
days 

(simulated) 
Upper limit 

R1  Fair 28 26 32 38 

R2  Good 38 28 37 43 

R3  Poor 38 49 59 67 

R4  Poor 28 29 38 45 
 

The number of wet days in the driest year (per 129 record length). The simulation is summarised by the median and 
the 5% and 95% limits. 

Although the overall simulations are unbiased for the median number of wet days per year 
(Figure 38), for the driest year on record the simulations are slightly wetter at most sites – Table 7 
shows approximately 10 more wet days at Poor sites). A similar analysis of the upper tail would show 
that, for the wettest year on record, the simulations are slightly drier at most sites. Despite the 
discrepancy in this statistic, it is not necessarily a significant practical concern. The reason is that 
because of the threshold, a day is classified as ‘wet’ for even 0.01 mm rain. From comparisons of the 
annual totals (Figure 35 and Annex A) the simulations show Good reproduction of annual totals at 
nearly all sites and for all portions of the distribution (the driest years, the median year and the 
wettest years). In other words, although there is a bias in the number of wet days in the driest year, 
there is not a bias in the rainfall amount (because the process of rainfall amounts compensates). This 
could be loosely interpreted as showing that the simulations have slightly (for example, 10 days) 
more light-rain ‘drizzle’ in the driest year on record. For the wettest year on record there are fewer 
wet days in the simulation. 
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The discussion in this section is a good example of the strengths and weaknesses of quantitative 
performance metrics: 

• The strengths are that the evaluation is comprehensively applied to all sites, it is consistently 
applied, and therefore able to highlight differences in performance (for example, R1: Fair; 
R2: Good; R3: Poor; R4: Poor). 

• The weakness is that the practical significance of an evaluation is not in itself clear. The annual 
proportion of wet days receives an Overall Poor rating, but it is important to consider the 
implications of this performance classification for practical applications of the time series. Put 
another way, which statistics are most important to reproduce successfully depends on the 
application. 
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Figure 38 Distribution of the proportion of wet days within a given year for 4 representative sites 
with different performance outcomes (Good, Fair and Poor) 
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3.2.4 Monthly wet day proportion (mean and standard deviation) 

The monthly summary of the proportion of wet days from Table 7 shows that the mean of this 
statistic is Overall Good and that the standard deviation is Overall Fair. Examples are shown in 
Figure 39 for 3 sites R78, R79 and R80 and it is clear that the means are consistent in the simulations 
for each month. The performance of the standard deviation of monthly proportions is Fair across 
most sites, but some sites can have multiple months that do not match well (for example, June, July 
at site 78 in Figure 39). Following the discussion in Section 3.2.3 the lack of variability in the 
proportion of wet days, while noticeable, is not necessarily a significant practical concern when 
compared to other statistics such as the mean and variability of monthly totals. Even though the 
proportion of wet days is less variable in the simulations (Figure 39), comparing back to Figure 36, it 
can be seen that the monthly total rainfalls are typically more variable in the simulations than in the 
observations. This shows that the distribution of rainfall amounts compensates for the lack of 
variability in number of wet days. 
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Whiskers of grey box plots extend to the 90% interval. Red shows the observed mean/standard deviation along with 
error bars showing the standard error of each observed statistic. 

Figure 39 Distribution of means of monthly proportions of wet days (left) and standard deviations of 
monthly proportions of wet days (right) for 3 different representative sites with different 
performance classifications (Good, Poor, Fair) 

3.2.5 Annual rainfall maximums (1, 2 and 3 day) 

From Table 5, the performance of 1-day annual maximums is Overall Good and the performance of 
2-day and 3-day maximums is Overall Fair. 

Figure 40 provides an example for 4 representative sites R25, R26, R27, R28, where each row is a 
different site and the 3 columns are the 3 different accumulated 1-, 2- and 3-day maximums. 
Inspecting this figure shows that for the Good and Fair cases the simulated distribution of annual 
maximums is similar to the observations. Despite the large number of Fair sites, it is worth noting 



 

52 

that it is very difficult for a model to match the extremes because the calibration and parameters are 
related to moments of the distribution rather than the extremes. Furthermore, multiday totals are an 
emergent feature of temporal correlation structure in addition to the daily marginal distribution. 

For 2-day maximums there are 11 Poor sites and for 3-day maximums there are 13 Poor sites. For the 
example of site R27 in Figure 40, the site is labelled Poor because of a discrepancy in the middle of 
the distribution but the upper tail has a reasonable match. For site 28, the upper tail does not match 
well. The limitation at these sites is mostly relevant to flood studies. This may be of concern for 
studies that are centred on sub-catchments near the Poor performing gauges, especially if those 
catchments have a response time in the order of several days. If this were the case, it would be 
possible to post-process the simulated data with quantile mapping to the observed extremes. This 
would improve the extremes at these sites without significantly affecting other features of the data 
(for example, there are only approximately 10% – 15% Poor sites, the annual maximum(s) affects only 
a small number of data points per year, and only a fraction of the years would require shifting). 

3.2.6 Multiyear annual evaporation totals (1, 2, 5 and 10 years) 

Table 6 summarises the performance of the modelled evaporation data. As with the rainfall totals, 
the 1-, 2-, 5- and 10-year totals have Overall Good performance. At the annual scale there are 15 
sites with Fair performance and at the 5- and 10-year scale there is one site with Poor performance. 

Figure 41 shows a representative site, R31, which has Fair performance at the annual scale and Good 
performance at the multiyear scale. As with the rainfall totals, where a year is labelled Fair the 
distribution of the simulations remains reasonably close to the observations (that is, there are no 
large departures of the distribution). Figure 42 shows performance at R32, which is the sole site 
having poor reproduction of the annual evaporation totals. Notably, this site is one of the IQQM 
evaporation sites, and is a site where artefacts in the record have been commented on at the daily 
and monthly timescale (Section 2.1.2). Figure 42 shows that the distribution is not biased at all 
timescales, that it has Good performance at the annual scale, but that it is too variable at the 5- and 
10-year timescales. This result could be addressed with post-processing. 
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Figure 40 Frequency analysis of (left) annual maximum daily rainfall (middle) annual maximum 2-day 
rainfall (right) annual maximum 3-day rainfall for 4 representative sites R25–R28 for 
different performance outcomes 
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Figure 41 Distribution of annual evaporation totals for 1-, 2-, 5- and 10-year totals for a 
representative location with Fair/ Good performance; simulation shows 90% 
confidence interval 



 

55 

 

Figure 42 Distribution of annual rainfall totals for 1-, 2-, 5- and 10-year totals for a representative 
location with Poor performance; simulation shows 90% confidence interval 
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3.2.7 Mean and standard deviation of monthly evaporation totals 

From Table 6, the performance of the monthly evaporation totals for the distribution mean is Overall 
Good and for the standard deviation is Overall Fair. Figure 43 shows the performance for 2 
representative sites, E31 and E32. A total of 28 sites have Fair performance and 9 sites have Poor 
performance for the standard deviation of monthly evaporation totals. 

The Fair performance occurs because the variability of the observations about the mean does not 
follow a sinusoidal function (for example, December observations are lower than November at E31). 
The sinusoids are fitted to the entire year and therefore smooth out the relationships between 
months. The implication is that it is possible for 1 or 2 months to show a discrepancy in the standard 
deviation – for example, the standard deviation of evaporation in September is 2 mm lower than the 
observations. The observations range from 85 mm to 115 mm (90% interval) whereas the simulations 
range from 88 mm to 112 mm. 

Of the sites with Poor performance, 7 of these use IQQM data. Section 2.1.2 showed that these data 
were simulated such that the evaporation value was constant within each month within a given year, 
unless there was a rainy day, in which case a different value was used for all rainy days. This 
assumption causes an artefact that makes the daily data appear to be more correlated than in 
reality. The simulation model does not match this temporal correlation structure because the 
autocorrelation parameter is averaged across all sites (necessary for a contemporaneous model). 
Without further study of the data from which the IQQM evaporations were derived, it is difficult to 
conclude how reasonable the simulated data are for this metric at these sites. The other 2 sites with 
Poor performance are sites E43 and E44. These sites have discrepancies of 1–2 mm lower in the 
standard deviation for some months. Similarly to the Fair sites, the range of simulated monthly total 
evaporation at these 2 Poor sites is less than that in the observations by several millimetres. 
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Whiskers of grey box plot extend to the 90% interval. Red shows the observed mean/standard deviation along with 
error bars showing the standard error of each observed statistic. Two representative sites are shown (see Section 2.5) 

Figure 43 Distribution of monthly evaporation totals; (left) means of monthly totals and (right) 
standard deviations of monthly totals 
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4 Discussion and recommendations 

4.1 Model summary 
A significant amount of data has been stochastically generated for use in hydrological modelling of 
the Macquarie River catchment. Each model variant has 196 time series, representing rainfall and 
evaporation data co-located at 117 unique locations: 53 are rainfall only, 56 are rainfall and Morton 
Wet evaporation and the remaining 7 sites are rainfall with all 3 variants of evaporation (Morton 
Wet, IQQM and FAO56). Each time series has been output for 10,000 years in a 2-column (date, 
value) format, including leap years. 

Three of the model variants represent historically equivalent simulations. Model C was used for the 
main output and model evaluation because it incorporates paleoclimatic information of the IPO. The 
inclusion of IPO states identified that IPO-negative years have 75 mm extra rainfall and 23 mm less 
evaporation, on average. This information has been built into the simulated data. The longest IPO 
phase in the instrumental record is 34 years, but simulations of 10,000 years can generate much 
longer IPO phases (instrumental-calibrated gives 66 years on average for the longest period, 
paleoclimate-calibrated gives 86 years, based on simulations of the data shown in Figure 9). It should 
be noted that there is significant variability within each state (see Figure 11 and Figure 13). 

Analysis of the observed data identified numerous features of importance to reproduce in the 
simulated data, including spatial gradients in the amounts of rain and evaporation, seasonal 
variability, interannual variability and negative correlation between the rainfall and evaporation. 
Some artefacts were noted in Section 2.2.3 regarding the IQQM evaporation. The data are generated 
from a model with a relatively coarse resolution and which assumes high persistence in daily 
evaporation, with the exception of rainfall days. 

The model is carefully structured to account for spatial and temporal correlations. The spatial 
correlations (rain–rain and evaporation–evaporation) can be preserved at each site without any 
smoothing assumptions (that is, the 100 × 100 and 45 × 45 sample spatial correlations are used 
directly in the model simulations). There is a negative correlation between daily evaporation and 
rainfall of approximately –0.3. This correlation is built into the model using a parametric correlation 
function to ensure stability. The IQQM data have low correlation to other evaporation estimates – 
even though they were simulated jointly with other evaporation, there is little benefit from so doing. 
A contemporaneous assumption is employed in the model, which requires the same autocorrelation 
parameter at all sites. This assumption provides stability to the correlation structure (needed for 
simulation) but can lead to a simplified temporal structure that can make the model inflexible for 
some attributes of the daily rainfall intermittency and properties such as multiday extremes. 

4.2 Summary of model evaluation 
Model evaluation was based on a systematic method of comparison, in which 2 developed tests were 
specified and applied to all relevant statistics. The tests rely on having replicates of equivalent length 
to the observations; therefore, the 10,000 years of simulated data were reshaped as 77 replicates, 
each of length 129 years. Confidence intervals for observed statistics were estimated from standard 
errors for means and variances and from a bootstrap method for distribution quantiles. All 
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evaluations require repeated tests across a collection of statistics, such as all months of the year or all 
quantiles in a distribution. Applying the developed classification rules: 

• a label of Good is applied when more than 90% of the observations are within the 90% 
confidence intervals of the simulation; if this criterion is not met, a second test is applied to 
determine the classification 

• a label of Fair is applied by comparing the simulated 90% confidence interval to the 90% range 
of observed sampling variability and determining that the intervals overlap in at least 90% of the 
instances; this is a more lenient test than that for the Good classification 

• a label of Poor is established if neither of the above criteria are met. 

A traffic light summary was produced by pooling the classifications across the 100 rainfall sites 
(Table 5) and 45 evaporation sites (Table 6), respectively. An overall classification was applied to a 
given statistic: 

• if more than 50% of the sites have Good performance the statistic is summarised as Overall 
Good 

• if more than 50% of the sites have Fair performance the statistic is summarised as Overall Fair 

• if more than 50% of the sites have Poor performance the statistic is summarised as Overall Poor. 

Multiyear totals: Given the importance of drought assessment for the Macquarie Valley, the 
statistics of most interest are the distributions of annual totals across multiple years. Rainfall and 
evaporation totals were considered for accumulation periods of 1, 2, 5 and 10 years and showed 
Overall Good performance. 

Monthly totals: For the distribution of monthly totals – for both rainfall and evaporation – the 
means were classified as Overall Good and the standard deviations of the distributions as Overall 
Fair. The reasons for the Fair classification are different for the rainfall and evaporation. For rainfall, a 
practical interpretation of the Fair classification is that the simulated data have occasional very wet 
months that are wetter than the observations suggest is likely. Because the distribution of monthly 
totals is skewed, the standard deviations are sensitive to the behaviour of the tail. For evaporation, 
the model uses a sinusoid to match the monthly variability, but the observed data are not perfectly 
sinusoidal in their variability. An implication of this is that the model cannot match the standard 
deviation for every month. For example, at one site, for a given month the standard deviation of 
evaporation was 2 mm lower in the simulation. This is seen in the range – in this example, the 
observations range from 85 mm to 115 mm (90% interval) the simulations range from 88 mm to 
112 mm. This issue arises for only some months due to the smoothing of the sinusoid. 

Proportion of wet days: the annual distribution of this statistic was classified as Overall Poor. 
Inspection shows the distribution is unbiased (so the average number of wet days matches), but the 
simulations are less variable than the observations. Discussion of representative Poor sites (Table 7) 
showed that, for the driest year on record, the simulations had approximately 10 more wet days than 
the observations. An interpretation is that the simulations have slightly more ‘drizzle’ rain in the 
driest years. This is not necessarily a significant practical issue because the overall number of wet 
days is unbiased and the annual totals show Good performance (including in the tail regions) due to 
compensation by the process of rainfall amounts. 

Multiday annual maximums: although the daily maximums were classified as Overall Good, the 
2-day and 3-day maximums were classified as Overall Fair. Extremes are an emergent feature of the 
model and are not calibrated, so they can be difficult to match. Where there were discrepancies, the 
observed maximums were typically not far outside the 90% limits of the simulated maximums. At a 
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small number of Poor sites, the maximums showed a discrepancy in the upper tail, which could be 
post-processed using quantile mapping if necessary. The present study is focused on drought 
conditions rather than floods, so this discrepancy is not of concern here. It might be relevant if the 
data were used for a flood study in a nearby catchment with a response time in the order of several 
days. 

4.3 Recommendations 
A set of output data has been jointly simulated for 100 rainfall sites and 45 evaporation sites, having 
10,000 concurrent years at each site. The simulated data are fit for application for drought 
assessment and show Overall Good reproduction of multiyear rainfall and evaporation totals. 

• Of the 3 historical model variants, Model C is recommended as the best model variant for 
studying the water balance of the Macquarie River catchment. Models A and B are available for 
comparison if needed. Because all sites were simulated jointly, it is reasonable to use any subset 
of sites for modelling purposes, providing the years are concurrent (that is, the correlations are 
preserved). Given the strong gradients in the catchment, care should be taken when selecting 
sites to ensure they are representative. 

• Subsequent hydrological simulations should consider any impact of the IQQM evaporation data. 
It appears to be qualitatively and quantitatively different from the other types of evaporation 
data (a different spatial pattern, higher totals, monthly blocks and high daily persistence). 

All model variants reproduce a wide range of features including the distributions of amounts from 
days to multiples of years, key elements of variability such as the seasonal cycle and climatic 
oscillations, spatial correlations (by using sample estimates), rainfall–evaporation correlations and 
projected median changes from a selected climate scenario. The generated output time series are fit 
for the purpose of daily water balance modelling in the Macquarie Valley to facilitate risk 
assessments related to hydrological functions. 
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Table A.1 List of 100 rainfall sites used in the study 
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Internal ID Station ID Station location 

R1 50018 Dandaloo (Kelvin) 

R2 50031 Peak Hill Post Office 

R3 50002 Goonumbla (Avondale) 

R4 50004 Bogan Gate Post Office 

R5 50012 Burra Burra 

R6 50016 Goonumbla (Coradgery) 

R7 50028 Trundle (Murrumbogie) 

R8 50036 Trundle (Brookview St) 

R9 51072 Quambone (Carwell) 

R10 62026 Rylstone (Ilford Rd) 

R11 65034 Wellington (Agrowplow) 

R12 51031 Nyngan (Canonbar) 

R13 51034 Warren (Mumblebone) 

R14 51037 Narromine (Alagalah St) 

R15 51054 Warren (Frawley St) 

R16 62003 Mumbil (Burrendong Dam) 

R17 62021 Mudgee (George Street) 

R18 65012 Dubbo (Darling Street) 

R19 51004 Trangie (Old Bundemar) 

R20 51018 Gilgandra (Chelmsford Ave) 

R21 55041 Nundle Post Office 

R22 62013 Gulgong Post Office 

R23 63004 Bathurst Gaol 

R24 63005 Bathurst Agricultural Station 

R25 63010 Blayney Post Office 

R26 63033 Gurnang State Forest (Oberon Ya) 

R27 63035 Hill End Post Office 

R28 63058 Mullion Creek (Mullion Range Frst) 

R29 63063 Oberon (Springbank) 

R30 63064 O’Connell (Stratford) 

R31 63066 Orange (Mclaughlin St) 

R32 63089 Wattle Flat General Store 

R33 64025 Coolah (Binnia St) 

R34 65003 Bodangora Post Office 
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R35 65011 Cumnock (Willow Park) 

R36 65023 Molong (Hill St) 

R37 65035 Wellington Research Centre 

R38 50008 Peak Hill (Bruie Plains) 

R39 50037 Tullamore (Old Post Office) 

R40 51005 Narromine (Mumble Peg) 

R41 51008 Wyanga (Barcoo) 

R42 51010 Coonamble Comparison 

R43 51022 Gulargambone (Yalcogrin St) 

R44 51025 Warren (Haddon Rig) 

R45 51038 Nevertire (Clyde St) 

R46 51042 Quambone Station 

R47 51048 Trangie Post Office 

R48 51049 Trangie Research Station Aws 

R49 51051 Gilgandra (Berida) 

R50 51066 Eumungerie Post Office  

R51 51115 Narromine Airport 

R52 62012 Cudgegong (Kiora) 

R53 62014 Hargraves (General Store) 

R54 62018 Katella 

R55 62020 Bylong (Montoro) 

R56 62027 Shepherds Creek 

R57 62028 Goolma (Brooklyn) 

R58 62029 Ilford (Tara) 

R59 62031 Ilford (Warrangunyah) 

R60 62033 Hargraves (Weeroona) 

R61 62035 Leadville (Moreton Bay) 

R62 62057 Coolah (Coolah Creek) 

R63 62075 Galambine (Gooree Park) 

R64 62084 Budgee Budgee (Botobolar Vnyrd) 

R65 62099 Stuart Town (Canobla) 

R66 63000 Abercrombie (Abercrombie Bridge) 

R67 63011 Borenore Store 

R68 63012 Running Stream (Brooklyn) 

R69 63036 Oberon (Jenolan Caves) 
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R70 63037 Oberon (Jenolan State Forest) 

R71 63053 Millthorpe (Inala) 

R72 63071 Portland (Jamieson St) 

R73 63073 Rockley Post Office 

R74 63076 Sofala Old Post Office 

R75 63079 Sunny Corner (Snow Line) 

R76 63080 Black Springs (Swatchfield) 

R77 63083 Trunkey Creek Black Stump Htl Stn 

R78 63085 Paling Yards (Ulabri) 

R79 63086 Blayney (Vittoria) 

R80 63087 Black Springs Forestry 

R81 63090 Wellwood 

R82 63136 Yetholme (Kurrawong) 

R83 63146 Cheetham Flats (Jundas) 

R84 63233 Rockley (Clevelands) 

R85 64009 Dunedoo Post Office 

R86 64010 Elong Elong (Bendeela St) 

R87 64015 Mendooran Post Office 

R88 64026 Cobbora (Ellismayne) 

R89 65000 Arthurville (Cramond) 

R90 65005 Bumberry 

R91 65010 Cudal Post Office 

R92 65018 Geurie Post Office 

R93 65020 Manildra (George St) 

R94 65022 Manildra (Hazeldale) 

R95 65025 Obley 

R96 65026 Parkes (Macarthur Street) 

R97 65030 Dubbo (Mentone) 

R98 65032 Wandoo Wandong 

R99 65036 Yeoval Post Office 

R100 65037 Dubbo State Forest 



 

67 

Table A.2 List of 45 evaporation sites used in the study (31 unique locations because E32–E45 
are co-located) 
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Internal ID Station ID Station location 

E1 50018Mwet Dandaloo (Kelvin) 

E2 50031Mwet Peak Hill Post Office 

E3 51072Mwet Quambone (Carwell) 

E4 62026Mwet Rylstone (Ilford Rd) 

E5 65034Mwet Wellington (Agrowplow) 

E6 51031Mwet Nyngan (Canonbar) 

E7 51034Mwet Warren (Mumblebone) 

E8 51037Mwet Narromine (Alagalah St) 

E9 51054Mwet Warren (Frawley St) 

E10 62003Mwet Mumbil (Burrendong Dam) 

E11 62021Mwet Mudgee (George Street) 

E12 65012Mwet Dubbo (Darling Street) 

E13 51004Mwet Trangie (Old Bundemar) 

E14 51018Mwet Gilgandra (Chelmsford Ave) 

E15 55041Mwet Nundle Post Office 

E16 62013Mwet Gulgong Post Office 

E17 63004Mwet Bathurst Gaol 

E18 63005Mwet Bathurst Agricultural Station 

E19 63010Mwet Blayney Post Office 

E20 63033Mwet Gurnang State Forest (Oberon Ya) 

E21 63035Mwet Hill End Post Office 

E22 63058Mwet Mullion Creek (Mullion Range Frst) 

E23 63063Mwet Oberon (Springbank) 

E24 63064Mwet O'connell (Stratford) 

E25 63066Mwet Orange (Mclaughlin St) 

E26 63089Mwet Wattle Flat General Store 

E27 64025Mwet Coolah (Binnia St) 

E28 65003Mwet Bodangora Post Office 

E29 65011Mwet Cumnock (Willow Park) 

E30 65023Mwet Molong (Hill St) 

E31 65035Mwet Wellington Research Centre 

E32 51031b7f-evt Nyngan (Canonbar) 

E33 51034b7f-evt Warren (Mumblebone) 

E34 51037b7f-evt Narromine (Alagalah St) 
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E35 51054b7f-evt Warren (Frawley St) 

E36 62003b17-evg Mumbil (Burrendong Dam) 

E37 62021_17-evg Mudgee (George Street) 

E38 65012b7f-evt Dubbo (Darling Street) 

E39 51031_FAO56 Nyngan (Canonbar) 

E40 51034_FAO56 Warren (Mumblebone) 

E41 51037_FAO56 Narromine (Alagalah St) 

E42 51054_FAO56 Warren (Frawley St) 

E43 62003_FAO56 Mumbil (Burrendong Dam) 

E44 62021_FAO56 Mudgee (George Street) 

E45 65012_FAO56 Dubbo (Darling Street) 
 

The Mwet label indicates data following the Morton Wet equation, -evt/-evg labels indicate the IQQM evaporation 
data and FAO56 indicates the sites using reference crop data. 
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Appendix B – Traffic light comparison for 
Model A (base), Model B (instrumental 
IPO) and Model C (paleoclimatic IPO) 
Table B.1 Rainfall evaluation summary of performance for 3 different model variants 
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Statistic Model A:  
Base 

Model 
performa

nce 
Good 
(%) 

Model 
A:  

Base 
Model 
perfor
mance 

Fair 
(%) 

Model 
A:  

Base 
Model 

perform
ance 
Poor 
(%) 

Model 
B:  

Instrum
ental 
IPO 

Model 
perform

ance 
Good 
(%) 

Model 
B:  

Instru
mental 

IPO 
Model 
perfor
mance 

Fair 
(%) 

Model 
B:  

Instrum
ental 
IPO 

Model 
perform

ance 
Poor 
(%) 

Model 
C:  

Paleocli
matic 
IPO 

Model 
perform

ance 
Good 
(%) 

Model 
C:  

Paleocli
matic 
IPO 

Model 
perform

ance 
Fair 
(%) 

Model 
C:  

Paleoc
limati
c IPO 
Model 
perfor
manc
e Poor 

(%) 

Annual total rainfall 
nYr=1 

93 7 0 99 1 0 96 4 0 

Annual total rainfall 
nYr=2 

99 1 0 99 1 0 99 1 0 

Annual total rainfall 
nYr=5 

94 5 1 97 2 1 97 3 1 

Annual total rainfall 
nYr=10 

89 11 0 96 4 0 95 5 0 

Mean of monthly rainfall 
totals 

100 0 0 100 0 0 100 0 0 

Sdev of monthly rainfall 
totals 

7 93 0 6 94 0 7 93 0 

Distribution prop. wet 
days 

0 15 85 3 24 73 5 20 75 

Mean of monthly prop. 
wet days 

98 2 0 99 1 0 98 2 0 

Sdev of monthly prop. 
wet days 

15 76 9 19 73 8 22 74 4 

Annual 1-day rainfall 
max. 

47 53 0 50 50 0 53 47 0 

Annual 2-day rainfall 
max. 

2 89 9 2 90 8 3 86 11 

Annual 3-day rainfall 
max. 

4 79 17 4 86 10 4 83 13 
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Table B.2 Evaporation evaluation summary of performance for 3 different model variants 

Statistic Model 
A:  

Base 
Model 

perform
ance 
Good 
(%) 

Model 
A:  

Base 
Model 

perform
ance 
Fair 
(%) 

Model 
A:  

Base 
Model 

perform
ance 
Poor 
(%) 

Model 
B:  

Instrum
ental 
IPO 

Model 
perform

ance 
Good 
(%) 

Model 
B:  

Instrum
ental 
IPO 

Model 
perform

ance 
Fair 
(%) 

Model 
B:  

Instrum
ental 
IPO 

Model 
perform

ance 
Poor 
(%) 

Model 
C:  

Paleocli
matic 
IPO 

Model 
perfor
mance 
Good 
(%) 

Model 
C:  

Paleocli
matic 
IPO 

Model 
perfor
mance 

Fair 
(%) 

Model 
C:  

Paleocli
matic 
IPO 

Model 
perform

ance 
Poor 
(%) 

Annual total rainfall 
nYr=1 

80 20 0 87 13 0 84 16 0 

Annual total rainfall 
nYr=2 

91 9 0 91 9 0 93 7 0 

Annual total rainfall 
nYr=5 

89 9 2 91 4 5 91 7 2 

Annual total rainfall 
nYr=10 

98 2 0 93 7 0 98 2 0 

Mean of monthly rainfall 
totals 

98 2 0 93 7 0 98 2 0 

Sdev of monthly rainfall 
totals 

16 64 20 11 71 18 18 62 20 
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